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ABSTRACT Cyber-Physical Systems (CPS) and Internet of Thing (IoT) generate large amounts of data
spurring the rise of Artificial Intelligence (AI) based smart applications. Driven by rapid advancements in
technologies that support smart devices, agriculture and farming sector is shifting towards IoT connected
ecosystem to balance the increase in demand for food supply. As the number of smart farms reach critical
mass, it is now possible to include AI assisted systems at a cooperative (co-op) farming level. Today, in the
United States alone there are about 1,871 co-ops serving 1,890,057 member farmers. Hence, such advanced
technologies and infrastructure when incorporated in the co-op farming ecosystem can immensely benefit
small member farmers who operate and maintain these independent co-op entities. In this paper, we develop
a connected cooperative ecosystem which defines sensors and their communication among different entities
along with cloud supported co-op hub. We develop member farm and co-op ontologies to capture data and
various interactions that happen between shared resources, member farms, and the co-op that are stored in
the cloud. These can then help generate AI supported insights for farmers and the cooperative. Several co-op
farming use case scenarios have been discussed to demonstrate the functioning of our smart cooperative
ecosystem. Finally, the paper describes various AI applications that can be deployed at the co-op level to aid
member farmers.

INDEX TERMS Cooperative smart farming, cyber-physical systems, artificial intelligence, precision
agriculture, ontology.

I. INTRODUCTION
Over the past few years, there has been a drop in agricultural
growth per capita income [1]. This is a result of various
environmental factors such as soil degradation, excessive use
of fertilizers, etc. along with social issues such as lack of
technological investment in the agricultural sector. According
to theUnited States Department of Agriculture (USDA), there
would be a 20% decline in global food production and a
10% projected increase in world population by 2050 [2].
Therefore, the demand for food is expected to increase in the
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range of 59% to 98% [3]. This shows a negative indication
towards shortage and disruption of the food supply chain
in the foreseeable future. Moreover, long term effects such
as climate change, depletion of water levels, reduction in
farm land, economic crisis, etc. impose a global threat to
agriculture sectors.

In order to combat this crisis and to serve future genera-
tions, effective strategies are required to meet the growing
demands [4] for food especially to ensure equitable food
security. Hence, agriculture communities are showing keen
interest in adoptingmodern approaches like precision agricul-
ture and smart farming by integrating farming with Internet
of things (IoT) platform [5]. Incorporating connected sensors
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together with cloud and edge enabled services in the agricul-
tural domain will help augment agricultural productivity and
efficiency.

Data collected from various ground based sensors
deployed on a farm and aerial drones provide details such
as soil moisture, temperature, water content, etc. farmers
can monitor field crops, maintain quality and mitigate risks.
For example, NatureSweet Tomatoes,1 Del Campo2 stated
that they have observed reduction in water consumption of
about 30%. Similar approaches have also limited the overuse
of fertilizers that in turn reduced the effect on the crop
yield [6]. In Brazil, control of herbicide-resistant weed [7]
was achieved by identifying and spraying on the target weed
in real time using precision agriculture tools like Weedit3

and WeedSeeker.4 Simultaneously, aerial images provided
by an agricultural drone helped farmers identify anomalies
in irrigation, plant health indices, etc. For example, farmers
can address high priority issues like reduced water content
in the soil early enough to make an adjustment based on
aerial images. As an added advantage, fertilizers can be
sprayed 40 to 60 times faster across the farm using drones.5

Data collected from various sensors have a positive impact
on optimizing agricultural productivity. Consequently, con-
necting on farm devices to the Internet and automating the
data collection helps farmer make smarter decisions. Also,
reports [8], [9] show that connected farms are expected to
generate as many as 4.1 million data points each day by 2050.
Such smart farm ecosystems not only deal with on-field data
but also have access to a wider ecosystem that includes all
the farming operations and the entire food supply chain. The
projected exponential growth of global smart farm market is
about 38.1 billion by the end of 2024 [10] due to the growing
use of cloud analytical tools by the farmers.

As more CPS and data assisted technologies have been
adopted by various individual farms, their capital investment
and maintenance costs have increased. Though most farm-
ers have keen interest towards technological advancements
in the agriculture sector, it is still a drawback for small
farmers as it exceeds their investment and technical skills.
Therefore, procurement and deployment of sensors and AI
based solutions from farming cooperatives can add value to
small member farmers who are a part of co-op organizations
[11]. Current co-op organizations and ecosystem lack such
connected technologies that have potential to help member
farms and offer them same services which are usually used by
larger farmers with more resources and capital. For example,
an individual member farmer can monitor sowing of seeds
for an overall better crop harvest by borrowing the smart
precision seeding equipment with IoT-enabled sensors from
pooled co-op resources for a certain time period. It is expected

1https://naturesweet.com
2https://www.producemarketguide.com/company/125528/del-campo-

supreme-inc
3https://www.weed-it.com
4https://agriculture.trimble.com/product/weedseeker-spot-spray-system/
5https://www.businessinsider.com/smart-farming-IoT-agriculture

that technological investment in these organizations will bol-
ster individual member farmers in rural communities.

In terms of statistics and its broader societal impact,
agriculture and farm-related industries are one of the key
drivers that contribute to the economic growth of several
countries around the globe. With almost 40% of the area
covered in farmland, the state of Tennessee in the US has
around 75000 farms, reflecting its economic importance for
the state. Several farming cooperatives have been setup across
the state which further aid the rural economy by offering
supplies and resources to farming community. These co-ops
enable small farmers in rural areas to pool their machinery,
resources, etc. and have on average a thousand member
farmers [12]. Currently more than 75% of Tennessee’s rural
residents are served by a cooperative [13]. These numbers
are consistent with other agriculture intensive states and
jurisdictions. In the United States, there are about 1,871
co-ops serving 1,890,057 member farmers [14]. Members of
these co-ops utilize them for access to greater annual use
of large machines, efficient labor use during peak fieldwork
times, produce transportation, price negotiation, equipment
repair and maintenance [15]. These co-ops generally have
multitude of individual farmers who sign a co-op agreement
detailing its mission and operational rules. These agreements
describe, types of memberships, cost/machine/labor sharing
rules, types of crops to be grown, record keeping, etc.

Currently, these co-ops use legacy databases and vari-
ous enterprise resource planning (ERP) systems to schedule
machine use and maintenance, hiring farm labor, specialized
machine operators, coordinatingmarket visits, price/purchase
data etc. [16], [17].With the emergence of fast interconnected
technologies, it is now possible to connect various individual
smart farms with the cooperatives, using cloud and edge-
based technologies that will provide immense benefits to the
farming community.

Our work is based on creating this connected coopera-
tive ecosystem that will provide more accurate and a data
driven dimension to precision agriculture. Further, such tech-
nologies must be resilient against cyber threats and call for
the development of tailored security solutions [18], [19].
Also, these cooperatives work on well-defined membership
agreements signed by individual member farmers. The pro-
posed ecosystem needs to ensure compliance by individ-
ual members for machine use, labor policies, and enforce
rules regarding data sharing, ownership and member privacy.
This includes the development and adoption of multi-layered
cyber physical system technologies to connect individual
smart farms to the cooperative cloud/headquarters. In order to
be efficient, the ecosystem also needs to utilize technologies
that are available and viable in rural communities. To achieve
this goal, we present a co-op ontology for the proposed
multi-layered internet connected ecosystem and express how
complex situations are handled by the proposed ecosystem
with the help of use case scenarios. We also explore various
AI applications that can use the collected data to diagnose
critical conditions of the farm such as crop diseases, soil
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FIGURE 1. A roadmap of research in co-op smart farming ecosystem.

conditions, etc., and also assist the individual farmers in tack-
ling critical problems. In this paper, we present an overview
of the co-op smart farming ecosystem shown in Figure 1 and
various services that can be beneficial to member farmers.

The main contributions of this paper are:

• We propose an architecture of smart farming coop-
erative ecosystem and describe different interactions
between the components. The developed ecosystem
will ensure seamless integration of computational and
physical components which include on-farm sensors,
autonomous tractors, drones, etc. (See Figure 2).

• We develop two ontologies to support AI applications
in a co-op environment. The first ontology is named as
member farm ontology that describes interactions that
happen in the farm and the second is a co-op agriculture
ontology created based on the co-op ecosystem that
details interactions like how co-op resources are shared
between individual member farms.

• Weutilize the co-op agriculture ontology to describe var-
ious operations of the co-op with the help of use-cases
in selected scenarios, like the entire process of leasing
an equipment that includes sharing of required mem-
ber farm data based on agreements about the borrowed
equipment, actions involved in returning the borrowed
equipment, etc.

• We discuss various AI applications that can be devel-
oped for the co-op ecosystem that benefits member
farmers, broadly addressed in four categories such
as (i) Marketing and Distribution, (ii) Resources and
Equipment, (iii) Labor, (iv) Service and Supply.

The rest of the paper is organized as follows – Section II
discusses related work on various aspects such as cooperative

farming, cooperative agreements and compliance, precision
agriculture technologies along with the use of AI and ontolo-
gies in smart farming. Section III explains the architecture
of our system, its entities and their interactions and co-op
agreements including compliance which controls the flow
of information. Section IV details our individual member
farm ontology and co-op agriculture ontology. Section V
demonstrates the operation of co-op ecosystem with the help
of use cases. Later, Section VI describes various real time
AI applications that support co-op members. Finally, we con-
clude the paper in Section VII.

II. RELATED WORK
In order to better define the technical and fundamental needs
of a co-op ecosystem we discuss some of the important
related work relevant to cooperative farming, cooperative
agreements and compliance, precision agriculture technolo-
gies along with the use of AI and ontologies in smart farming
and other cyber physical systems. We also highlight some
gaps and limitations in existing approaches by comparing
them with the state of the art technologies and research.

A. COOPERATIVES AND CO-OP FARMING
Cooperatives are formal enterprise which are financed, con-
trolled, and owned by members for mutual benefit [20]–[23].
These co-ops work on membership agreements illustrating
operational rules together with conditions and use of shared
resources. Such cooperatives operate in different sectors such
as grocery suppliers, water supplies, credit unions, utili-
ties, farm suppliers, transportation and childcare. In partic-
ular, the United States Department of Agriculture (USDA)
acknowledges the importance of co-ops in especially in the
rural communities [24] of the country. Cooperatives provide
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education and training for members, elected representatives,
managers and employees so they can contribute effectively
to the development of their cooperative. While focusing
on member needs, cooperatives work for the sustainable
development of communities through policies and programs
accepted by the members.

According to California Center for Cooperative Develop-
ment [25], agricultural co-ops provide various benefits to its
members as they come together to market and process their
farm products, purchase and borrow agriculture equipment,
supplies and exchangeworkers. Cameron et al. [26] discussed
the role of agriculture cooperatives in Canada and Cuba
which led to the strengthening of local food system. Statistics
show that for every sector in the United States economy
they are 29,000 cooperatives [27]. Further, many farmers are
a member of existing 3,000 agricultural co-ops generating
employment for 191,000 people in the year 2014.

There are various types of agricultural cooperative soci-
eties such as producer cooperatives, consumer cooperatives,
worker cooperatives and purchasing cooperatives where each
of them offer different services and benefits to its mem-
bers. An example of a successful agricultural cooperative
is Florida’s Natural Growers [28] where members of this
co-op deal with the quality and production of citrus fruits.
Their collaboration extends from the initial plantation stage
and continues till the harvest season. Another example is
the Sunkist Growers and Cabot Creamery Cooperative which
works together with smaller co-ops like Our Family Farms
[29] and Deep Root Organic Cooperative [30] to market and
distribute their produce. In North Carolina, small individ-
ual farmers have come together and established a coopera-
tive society to share agriculture equipment and resources by
developing a sustainable agriculture tool lending library [31].

At present, cooperatives function by utilizing traditional
database management system like relational databases, data
warehouses for collecting, storing, and aggregating the data
generated. Resource allocation and borrow schedules are
decided with the help of Enterprise Resource Planning (ERP)
systems. The latter has limited scope for handling large
amounts of data, generating insights by analyzing collected
data, etc. Due to these drawbacks, the cooperative ecosystem
has not yet integrated AI-driven techniques.We address many
of these limitation by discussing various technical founda-
tions and exploring potential AI applications that can aug-
ment the ecosystem (see Section VI).

B. AI SOLUTIONS IN SMART FARMING
Smart Farming has revolutionized the agricultural domain
which has also assisted in increasing the quantity and quality
of food and raw products. Sundmaeker et al. [32] discussed
the impact of smart farming on real-time monitoring, remote
management, etc. Specific crop related information such as
soil nutrient deficiencies, plant stress, soil moisture etc. con-
tent can be identified by the use of hyper-spectral data to
prevent crop damage [33]. Kamilaris et al. [34] described
an Agri-IoT framework where an online platform was setup

to provide services like, identification of trending events
on social media, farm council alerts, automatic reasoning
over real-time data. This system helped farmers in deci-
sion making during critical weather conditions which are
common and very critical in agriculture domains. In order
to analyze and classify different types of weed on a farm,
Lottes et al. [35] proposed a system that detects vegetation
cover from aerial images provided by a agricultural drone.
Sai et al. [36] have also investigated requirements of a single
smart farm based on a three layered architecture with physical
devices, corresponding digital twins (virtual counterparts)
and a knowledge graph representing interactions among dif-
ferent entities in a single farm. This work further proposed
a smart farm ontology incorporating different users, sensors,
and systems in a farm. Utilizing this ontology, the authors
specified smart farming access control policies based on the
widely used Attribute Based Access Control (ABAC) models
[37], [38], and on Semantic Web Rule Language (SWRL)
[39] and the Playts ontology [40] for sensor context. Irrigation
control based climatic conditions is another important aspect
of smart farming. Project named SCRI-MINDS [41] has been
developed to increase efficiency in plant production while
controlling excessive use of irrigation water and nutrients.

Well established AI techniques when applied on the
data collected from farm sensors can help in develop-
ing an efficient and data driven smart farming ecosystem.
Ghosal et al. [42] proposed a deep machine vision frame-
work which determined different levels of plants stress
in soybean crop. They used explainable neural networks
to describe the severity of plant stress based on visual
images. An AI based sowing application was developed by
Microsoft [43]. This system provides recommendations like,
optimal period for sowing seeds, preparing land for cul-
tivation, etc. Lee et al. [44] designed a tool which helped
in determining pest risk in fruit trees. Equipment such as
AutoTrac [45] uses AI techniques to plant crops in a uni-
form manner with the aim of reducing overlap and excessive
gap between plants. BlueRiver Technology [46] has applied
computer vision techniques to identify individual plants and
find abnormalities. Sa et al. [47] detailed an approach for
dense weed classification from the aerial images by using
encoder-decoder cascaded Convolutional Neural Network
(CNN). Another application of AI that has shown promising
results [48] is the use of Support Vector Machines (SVM) for
sorting and using fuzzy logic for grading agricultural produce
automatically without human interference.

Several stakeholders are interested in innovation and uti-
lization of AI in the agriculture sector. Microsoft’s Farm-
Beat project [49], [50] is an example, where they focus on
increasing the farm productivity by connecting AI tools and
sensors deployed in the farm based on a data-driven approach.
Montano’s subsidary corporation named The Climate Corpo-
ration [51] has started research projects in order to provide
farmers with various digital solutions. They focus on disease
diagnosis, fertility scripting, seed scripting and their selec-
tion. Also, Precision King has partnered with AT&T to help
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farmers monitor their farms and assist them with insights in
order to achieve irrigation efficiency [52].

C. ONTOLOGY BASED SYSTEM FOR CPS
Ontology based systems have been used to model various
CPS ecosystems including smart homes [53], smart farms
[36], power grids [54], etc. Ontologies have been used for
knowledge representation in diverese technologies includ-
ing security, AI, and rule based systems. A report written
by Obrst et al. [55] has detailed the process of develop-
ing an ontology in the security domain. There are several
ontologies that have been developed in this domain over last
few years. For example, an ontology named CRATELO was
designed by Oltramari et al. [56]. The proposed framework
combined different domain ontologies and structure them
as three layers to identify security threats in the network
domain. Another ontology that deals with security of mobile
applications was developed by Beji et al. [57]. Additionally,
this framework provides countermeasures to the user based
on the availability of resources. Petrenko et al. [58] developed
an ontology to overcome negative impacts and restore the
functioning of a smart grid when faced with security vul-
nerabilities. In order to maintain web application security,
Razzaq et al. [59] described how their ontology could detect
and control cyber attacks. Finin et al. [60] exploited the flexi-
bility of decisionmaking in access control models by creating
and utilizing an ontology. Ontologies and knowledge graphs
have also been used in creating and analyzing digital twin
models [61]. These models are cyber clones of physical assets
usable for in-depth analysis. Banerjee et al. [62] introduced a
simple way of formalizing digital twin models for sensors in
industrial production lines.

Several ontologies are widely being created and adopted
for different domains such as healthcare [63], finance [64],
cybersecurity [65]–[67], manufacturing [68], etc. to address
variety of situations. For example, Gene Ontology (GO) [69]
helps speed up analysis on gene sets due to its structured orga-
nization, where gene products and their functionalities are
well defined. Information about various diseases and medical
vocabularies are represented in Disease Ontology [70] that
has been used by the biomedical community for classifi-
cation, healthcare reporting, etc. Legal Ontology [71]–[73]
helps in semantic indexing and search, keeping track of recent
changes in laws, etc. The cyber insurance ontology [74]
represents various insurance policies which would provide
the insurance seekers with necessary details such as policy
coverage, coverage limits, expected rate, etc.

In this paper, we create a member farm ontology to rep-
resent various interactions that happen between the sensors
deployed in the farm. Later, we develop a cooperative agricul-
ture ontology that represents co-op owned sensors as entities
and describe the relationships between them.

D. COOPERATIVE AGREEMENTS
Setting up a legal entity and agreements in the initial stages
of creating a co-op is imperative for a cooperative to be

successful, since improper use of cooperative services and
shared resources by its members may not solve its goal and
eventually leads to dissolution. Having a legally binding doc-
ument also provides stability, liability and greater access to
financial resources [75]. A cooperative agreement is a legal
document that has several important parts such as dividing
profits, ownership, usage conditions, and management etc.
For example, misuse of data captured from the farms may
lead to unparalleled insights to a competitive market. Man-
agement entity provides information and guidelines regarding
federal, state and local regulations to support crop production
and sale. Therefore, ownership entity deals about providing
access to real time information. Andrews et al. [76] discussed
positive effects of incorporating cooperative agreement by
surveying existing cooperatives across Europe. The coopera-
tives laid emphasis on economic efficiency and environment
effectiveness to avoid water conflicts in the agriculture sector.
Many researchers have previously worked on creating various
AI systems for legal text [72]–[74], [77], [78]. These enable
consumers to efficiently manage, monitor, and validate legal
contracts, such as Service Level Agreements (SLAs) and
privacy policies, that are available as text documents. They
propose a cognitive assistant that can be used to manage legal
documents by automatically extracting knowledge including
terms, rules, constraints and reasoning over them to vali-
date a service. The researchers have also created a Question
and Answering (Q&A) system that can be used to analyze
and obtain information from these documents. Similar sys-
tems are also needed for managing AI assisted secure co-op
ecosystems to enable automated enforcement of compliance
of agreements and policies.
In the following section, we describe a proposed smart coop-
erative ecosystem detailing it’s multi-layered architecture,
interactions that are further used to create two ecosystem
ontologies (Section IV). We also later discuss various AI
applications that can be built for this ecosystem (Section VI).

III. COOPERATIVE ECOSYSTEM
A connected cooperative ecosystem entails technologies and
underlying architecture integrating edge and cloud services,
offering capabilities to analyze data collected from deployed
smart sensors on the member farms. These capabilities also
enable data driven AI applications which can be harnessed to
increase crop yield, ensure efficient use of resources at the
same time lowering the cost of operations. In addition we
will also discuss ecosystem elements, co-op agreements and
compliance needs together with different interactions among
smart farming components to define the data and information
flow in the ecosystem.

A. ARCHITECTURE
The architecture of cooperative farming ecosystem consists
of physical layers, edge layer, and cloud services layer
together with networking technologies knitted across all the
layers to support communication.
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FIGURE 2. Conceptual cooperative smart farming architecture showcasing various elements and interactions.

The physical layer will hold the real sensors and actua-
tors deployed at the farm collecting information including
weather condition, soil moisture levels, humidity, electri-
cal conductivity, lighting, pH meter, etc. These devices are
responsible for data sensing and based on the information
gathered, help in actuating other devices to realise various
smart farming use cases. Examples of these sensors include
B&C Electronics SZ 1093 (pH), E+E Elektronik EE160
(Temperature/Humidity) etc. These sensors interact using
underlying communication technologies including on-farm
WiFi and cellular networks or high speed 5G.

The edge layer is deployed to connect devices in the farm
at the same time offer local and real time gateway connectiv-
ity and computations. These devices eliminate need for data
transfer to central cloud and limits the network bandwidth.
Edge computing layer can have several edge nodes which
offer services such as: data capturing, securitymonitoring and
detection, prediction and real-time decision support. These
edge computing plane may include NFV-powered control
modules and use IoT communication protocols such as Mes-
sage Queue Telemetry Transport (MQTT6) or Constrained
Application Protocol (CoAP7). In case of MQTT, the MQTT
agent acts as broker to support publish/subscribe scheme to
enable communication among physical devices using topics.
The use of context broker enables edge computing tasks
without need to contact cloud layer. AWS Greengrass8 is

6http://mqtt.org/
7https://coap.technology/
8https://aws.amazon.com/greengrass/

widely used edge service which can be used as a gateway
for each member farm, to allow local communication but
also enable cross member farm interaction and with a central
co-op cloud hub.
The cloud computing layer maintains state of the sensors

along with data records of the crops which includes filtered or
processed values sent via the edge layer. In general, Platform
as a Service (PaaS) architecture model is followed at the
cloud layer which supports running applications and data
services to support AI driven support to the farmers. This
layer can also enable virtualized representation of physical
components in the farm together with Big data services to
provide analytics and processing. Thee services are enabled
using distributed file system that ensure resilience and safety
of data. AWS, Google Cloud, and Microsoft Azure are some
of the widely used PaaS platforms which can be used by the
cooperative hub to support secure data and information shar-
ing among registeredmembers. Several farm equipment man-
ufacturers like, John Deere,9 Farmers Business Network,10

etc. have created cloud based products that help users monitor
various sensors and vehicles used on a farm.

B. ECOSYSTEM ELEMENTS
In order to better define the ecosystem, we elaborate on
various elements both at the member farm level and at the
co-op level. These elements belong to either the physical,
edge, or cloud computing layers defined above. Various inter-

9John Deere Operations Center. https://www.deere.com/en/technology-
products/precision-ag-technology/data-management/operations-center/

10Farmer’s Business Network. https://www.fbn.com/
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actions between these elements have been discussed in subse-
quent sections. Figure 2, illustrates various elements present
in the co-op ecosystem.

1) MEMBER FARM ELEMENTS
These include various physical layer sensors and actuators
deployed on the member farm. We have abstracted different
type of member farm elements on the basis of functionality
and mobility, into the following representations -

• Farm Based Units (FBU): The FBU represents various
physical entities on an individual farm that consists of
immovable sensors like humidity sensor, temperature
sensor, automated sprinklers, etc. The data captured
from these sensors are stored in member farm unit of
the co-op cloud.

• On-Board Units (OBU): The OBU represents movable
equipment like agricultural drones, harvesters, reapers,
etc. which are also owned by the member farm. These
OBUs while under operation interact with FBUs, WBUs
and other OBUs. Interactions that happen between these
sensors are also stored in member farm unit of the co-op
cloud.

• Worker Based Units (WBU): Workers employed in the
member farm are represented as WBU. They interact
with FBUs and operate the OBUs to perform multiple
tasks assigned by the individual member farm owners.
The member farm unit of the co-op cloud records all the
interactions that happen with the WBU.

• Home Based Unit (HBU): The HBU represents a hub
that is setup by the owner of the member farm to
interconnect all the deployed sensors in the farm. The
HBU allows the owner to monitor actions of the sensors
present in the farm and also grants access permissions to
WBU on resources deployed in the member farm. The
HBU is connected to the cloud service of the co-op.

2) CO-OP ELEMENTS
The co-op owns various resources like physical sensors and
leases them to member farms or employ workers that work on
various member farms. Co-op infrastructure includes physi-
cal entity, digital twin and co-op cloud for capturing, monitor-
ing, analyzing and visualizing all the operations that happen
between physical entities. We describe below the representa-
tions of the co-op owned elements and their functionality.

• Cooperative Based Unit (CBU): The CBU is the central-
ized unit that handles all the requests made by individual
member farms (HBU) and allocates co-op resources
based on their availability. The CBU can set-up/tear-
down communication with individual farm unit (HBU)
as they join/leave co-op. The interactions that are hap-
pening between individual member farm (HBU) and the
co-op owned sensors are governed by a co-op agree-
ments. Shared data obtained from individual member
farms (HBU) that is stored in the CBU unit of the cloud

provides insights such as operation or maintenance of
the co-op resources.

• Cooperative Worker Based Unit (CWBU): The cooper-
atives have workers represented as CWBU that could
be employed by the individual member farm owners as
temporary workers (CWBU) for a certain time period.
During this period, the temporary workers(CWBU) gain
access to member farm sensors (FBU,OBU) for per-
forming various tasks assigned by the member farm
owner. Access to all the resources in the member
farm is revoked once the employment of the temporary
worker (CWBU) expires.

• Cooperative On-Board Unit (COBU): Movable heavy
machinery like agricultural drones, repellers, tractors
that belong to the co-op are represented as COBUwhich
can be leased by the member farm owners. The tem-
porary ownership of the borrowed resources(COBU)
is transferred to HBU when CBU leases the COBUs
to individual member farm owners. The data collected
fromCOBUs during the borrowed time period are stored
in the member farm unit (HBU) of the co-op cloud.

• Cooperative Farm Based Unit (CFBU): Numerous static
sensors and actuators that are owned by the coopera-
tive farms are represented as CFBU. These sensors can
be borrowed by the member farm owners by request-
ing the CBU to grant access. For example, the ‘Mem-
ber_Farm_1’ requires grain analyzer (CFBU1) during
the harvesting season. It requests the CBU for borrowing
CFBU1 and the CBU grants access to sensor by evalu-
ating the availability of the grain analyzer (CFBU1).

3) DIGITAL TWIN
The physical sensors deployed in the member farm are
virtually represented as digital twins. They can be con-
sidered to be virtual replicas of physical elements of the
ecosystem [79], [80]. They are utilized to visualize and ana-
lyze the data for improving efficiency of the co-op ecosystem.
With the data collected from deployed sensors, they help
monitor all the interactions on the co-op farm ecosystem.
Moreover, digital twins play an important role in maintaining
the privacy of the individual member farm owners while shar-
ing the collected data of the borrowed resources to the CBU.
For example, MemberFarm_1 employs a worker (CWBU_1)
from CBU. The digital twin will let CBU access only certain
content of data that was collected by the CWBU_1 based on
co-op agreement. Furthermore, digital twins have been used
to provide insights about quality of crop, fertilizer usage, etc.
by utilizing AI applications that analyzes the data captured in
order to improve operational efficiency of the co-op ecosys-
tem (See Section VI).

4) REPRESENTATION GRAPH
The knowledge graph represents the top layer in the co-op
smart farming architecture. This structure represents the
interactions among various cyber physical entities in the
system spanning across multiple farm which are part of a
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cooperative. The nodes are physical devices and infrastruc-
tures in the system which are connected for information
exchange and communication as shown by the edges in the
graph. This interaction among the nodes is collected in the
representation graph and stored in central cloud repositories,
which in cooperative ecosystemwill be the cloud services use
by the cooperative hub. For example, the cloud will have the
interactions among CBU-HBU, OBU-OBU, CWBU-OBU
etc. Amobile OBU can interact with the farm owner’s HBUor
an OBU can share usage data with its worker’s WBU. These
physical-physical or physical-cyber-cyber-physical commu-
nications have short lifespans and are represented as data
edges in the graph. Every time a new farm device encounters
other devices either static or mobile, they exchange messages
and store them in the representation graph. This content is
accessible only to member farms or cooperative administra-
tors for monitoring, compliance, and visualization purposes.

The representation graph is optimized in the cooperative
cloud to remove redundant interactions and store relevant data
in addition to detecting anomalous events in the ecosystem.
As an example, in case the devices are shared/borrowed
among cooperative members, the access and interaction
among the devices must only be limited among devices
co-located at the farm. In case a borrowed autonomous tractor
interacts with the farm sensors even after it is not used at the
farm, such anomalous events must automatically be stored in
the graph with timestamp. This will enable farmer and coop-
erative administrator to enable authorized interactions and
block not allowed communications. Various modern access
control schemes and encryption techniques can be used to
secure and monitor access to the representation graph.

C. CO-OP AGREEMENTS & COMPLIANCE
At the core of an agriculture cooperative we have various
agreements that lay down its foundations. These agree-
ments explicitly state a co-op’s bylaws, operating agree-
ments, partnership and/or membership details, governance
strategies, decision-making processes, shared equipment
ownership, financial agreements specifically profit and loss
allocation [81]. A sample co-op agreement can be found at
[82]. A typical co-op agreement contains about 16 to 20
pages of legal text. Each piece is critical to the smart farming
co-op ecosystem. Any AI assisted, secure CPS system built
for this ecosystem needs to codify and include the complex-
ities and details of these cooperative agreements. Including
these agreements will enable the ecosystem to understand
data sharing, compliance and privacy aspects of a co-op.
It will enable individual member smart farms to exchange
pre-negotiated data with the co-op and enforce multiparty
compliance, ensuring privacy. The co-op on the other hand
will also verify negotiated machine use and check if members
are complying with the co-op agreement. Currently this is
done through manual inspection and by using other adhoc
technologies. Any AI services part of the ecosystem, needs to
function in accordance with these agreements. We discussed
some of these AI agents in section VI. Our ontology described

in the next subsection can also be extended to incorporate
these agreements and compliance rules. Next we also discuss
some important issues focusing on compliance and various
AI systems, in purview of a co-op ecosystem:

1) DATA SECURITY & PRIVACY
Securing the system that stores large volumes of data gen-
erated by the sensors deployed in members farms, is one of
the most significant implications faced by the cooperative
ecosystem. Sharing or misusing data with an unauthorized
entity or another member farm owner without permission will
result in various legal challenges. As data from various farms
is being used by the co-op to provide insights, maintaining
privacy is an important concern. Especially, considering the
potential legal challenges that can arise if a user’s privacy
is breached. Proper anonymization techniques need to be
utilized and explicitly mentioned in the co-op agreement.
Specific research and technologies are already in place [83],
[84]. European Union’s General Data Protection Regula-
tion (GDPR) includes multiple technical recommendations
that can be leveraged to keep co-op and individual farm data
secure and private [85].

2) DATA OWNERSHIP & PROVENANCE
Protecting the agriculture data from theft or infringement
from unauthorized commercial use is important to avoid
misuse and remain compliant with co-op agreements. Spe-
cific technologies need to be built to track ownership of
the data collected. Some modern day systems have utilized
blockchain [86]–[88] technologies and knowledge graphs to
track ownership and data provenance. Here, co-op agreement
clauses are converted to chaincode policies and smart con-
tracts that can be executed on the blockchain.

3) COMPLIANCE WITH FEDERAL REGULATIONS
Agriculture is one of the most well regulated industries
all over the globe. Various countries across the globe
have many laws, regulations, and supervisory authorities
[89]–[91]. These touch upon specific compliance require-
ments for producing and selling of agricultural products.
One such set of regulations are the United State’s Code of
Federal Regulations (CFRs) - title 7 and title 9 that deal with
federal agriculture rules and regulations.11 The smart co-op
ecosystem will need to ensure these regulations are followed
and implemented in various AI systems that are created and
utilized. Not doing so may invite legal and compliance issues.
Some of these systems have been discussed in Section VI.

D. INTERACTIONS
When it comes to interaction among different entities, the
co-op ecosystem can be broken into two abstract parts: (i) an
individual member farm; and (ii) the co-op hub, including the
shared resources and workers. To model various interactions
in this ecosystemwe next discuss interactions in both of these

11https://www.ecfr.gov/cgi-bin/ECFR?page=browse
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FIGURE 3. Member smart farm interactions.

parts in detail. Using these interactions we also create the
ontology discussed in Section IV.

1) INTERACTIONS ON AN INDIVIDUAL MEMBER FARM
In our previous work [36], we have discussed in detail several
types of interactions among various entities present on an
individual smart farm. Figure 3, showcases these interactions.
Here we include an abbreviated list of the same -

a: FBU-FBU
This includes various interactions between deployed inter-
connected sensors and actuators. FBUs send and recieve
information about current status and past actions performed,
exchange data, interact with OBUs, WBUs and HBU.

b: OBU-OBU
OBUs are movable equipment like, autonomous tractors,
drones, etc. that can interact with the other physical OBUs
when present in the same geographical region. The OBUs
store the interactions that happened between the physical
OBUs or FBUs in the representation graph.

c: OBU-FBU
When OBUs want to perform actions such as crop harves-
tation, sowing seeds, dispersing fertilizer, etc. they interact
with various FBUs to gather data. The representation graph
contains all the interactions that occurred between the FBUs
which can be accessed by the OBUs.

d: FBU-WBU
FBUs present in farm are usually operated by WBUs to
perform specific actions. A WBU can interact with FBUs
only when granted security permission. A WBU requesting
an operation on FBU is stored as an interaction in the rep-
resentation graph to increase reliability of the system. FBUs
status is sent to the WBUwhenever there is any interaction to
keep the workers updated.

e: OBU-WBU
Workers operate the OBUs in order to perform various func-
tions in the farm as needed. The exchange of information
between the OBUs and WBU can be accessed by the owner
of the farm. WBUs can acquire only the present information
related to the OBUs from the time they are given access.

f: FBU-HBU
The WBUs present in the farm can interact with the FBUs
only when permission is granted by the HBU. The HBU has
permanent access to the all the FBUs in the farm. HBU stores
the representation graph and all the information exchanged
with the FBUs. This helps the HBU to access the historical
information of the FBUs to help them analyze and take deci-
sions based on the different scenarios.

g: OBU-HBU
When HBU receives the OBU-OBU interaction it stores it
in the representation graph to keep a track of the OBUs
operating on the farm. It also keeps track of theOBUdata, this
includes, current status, performance tracking, task updates,
etc.

h: WBU-HBU
HBU plays an important role in the network for building
the smart farm ecosystem. The HBU can decide to give
temporary or permanent access permissions for OBUs and
FBUs, to WBUs. If the WBUs are given temporary permis-
sion, they can access only the data stored from the units for
the time period specified, or based on their labor contract
agreement.

2) INTERACTIONS BETWEEN AN INDIVIDUAL SMART FARM
AND CO-OP HUB
Figure 4, maps all interactions that exist between an indi-
vidual member farm and the co-op. In these type of inter-
actions the individual smart farm’s HBU transmits data
across the farm’s boundary. A HBU plays a critical role
in this scenario, as it transmits data collected from indi-
vidual FBUs, OBUs to the co-op. These interactions are
regulated and comply with the co-op agreements discussed
previously.

a: CBU-HBU
The cooperative hub (CBU) is the centralized unit which has
access to some of the the individual member farms data in
accordance with the co-op agreement. When an individual
HBU establishes a connection with the CBU it can partic-
ipate in co-op benefits such as leasing of resources like,
CFBUs, COBUs, CWBUs, get security alerts when an abnor-
mal event happens, cost accounting, etc. (See Section VI).
Certain interactions that happen between the CBU and leased
resources are represented in the form of a representation
graph and stored in the cloud for future decisions (See
Figure 2).
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FIGURE 4. Interactions in cooperative farming between member farms and the central co-op hub.

b: CBU-HBU-CWBU
The cooperative hub (CBU) employs a group of work-
ers (CWBU) that can work on the member farms, when-
ever members need to borrow workers. When a member
farm (HBU) requests a worker for a particular time period
from the CBU; the co-op hub will transfer CWBU per-
missions based on availability during specified time peri-
ods to the member farm. The representation graph will
store various interactions that happen between the tempo-
rary worker (CWBU) and other units in the member farm.
CWBU’s access to member farm data from sensors such
as FBU and OBU (these belong to the member farm), will
be revoked once the employed time period for the CWBU
expires for that member farm.

c: CBU-HBU-COBU
Some heavy movable machinery like tractors, threshing
machines, etc. and expensive devices like agricultural
drones (COBUs) can be leased by the cooperative hub (CBU)
to reduce the burden on the individual member farms owners
(HBU). The temporary ownership of the COBU is granted
to the requested member farm HBU based on the scheduled
time slot. During this time the temporary COBU can share
only certain data with CBU and give status updates only
after complying with the co-op agreement. The entire data
collected from these interactions are stored in the cloud of that
particular member farm (HBU). The cooperative hub (CBU)
always resets the status of COBUwhenever being allocated to
a different member farm (HBU) to avoid information leakage.

For example, the interactions that happened in the previous
member farm 1 are deleted from the COBU before being
allocated to member farm 2.

d: CBU-HBU-CFBU
Various farm based units like, salinity mapper, grain analyzer,
high-tech produce tracker, etc. can be quite expensive and are
not used daily by the member farm owners. Therefore, the
member farm owners (HBU) can request the CBU for these
sensors (CFBUs). The CBU allocates the CFBUs based on
their availability for a fixed shorter time period to the member
farm owners (HBU). The HBU takes the temporary owner-
ship of the CFBU, perform tasks for that time period and
returns it to the CFBU before the expiry of the time interval.
The representation graph of the HBU stores interactions that
happen between the CFBU and the other units of the member
farm during that interval and automatic reset is done by the
CBU after the scheduled time interval to avoid data leakage.
For example, a yield monitoring system (CFBU) is borrowed
from the CBU by a member farm 1 owner (HBU) from 9 AM
to 11 AM. The member farm owner 1 can use the CFBU
only till 11 AM after which the access permission resets and
cannot be operated until further instruction are received from
the CBU.

e: FBU/OBU/WBU-CFBU/COBU/CWBU
Temporary devices such as CFBUs, COBUs and CWBUs can
be borrowed by a member farm owner (HBU) from the CBU
so as to perform certain farm operations. These devices when
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FIGURE 5. Member farm ontology.

present in a farm interact with various permanent sensors like,
FBUs, OBUs and WBUs that are already deployed in farm
by the member farm owner (HBU). Any interaction or access
to the permanent sensors is denied automatically, when the
leasing period of the temporary sensors expires. For example,
a temporary worker (CWBU) needs to gather information
that could be obtained by analyzing the data collected from
deployed FBUs, CFBUs regarding crop quality in order to
plan a harvest.

IV. ECOSYSTEM ONTOLOGIES
Ontologies describe various domain specific concepts
through classes and properties. These properties include rela-
tionships between various classes and their attributes. These
classes generally have multiple sub-classes, and a few parent
classes. Parent class relations are generally inherited by its
children. Instances are individual elements that are a type of
a class. These instances have different data properties and
can be associated with other instances via object properties.
For example, the instance ‘orange’ can be associated with the
color or the fruit. The instance of orange can have various
attributes and relations to other concepts. An entity ‘orange’
can have an attribute ‘type’ with a value ‘color’ or ‘fruit’.
These attributes are vital so as to differentiate between two
completely different concepts

Using the architecture and various interaction discussed
above in Section III-A & III-D, we have created two descrip-
tive ontologies. The first one focuses on an individual mem-
ber farm and can serve as the base ontology for multiple use-
cases. We call this our ‘member farm ontology’. The second
ontology describes various interactions and domain specific
knowledge about the farming co-op ecosystem. We name
this ontology ‘cooperatives agriculture ontology’. Next we
describe both of these ontologies in detail. Section V, show-
case various scenarios and how these ontologies help the

co-op ecosystem. These ontologies can help build various AI
agents listed in Section VI.

A. MEMBER FARM ONTOLOGY
Here, we describe our individual member farm ontology
that has been developed by considering various elements
and interactions mentioned above in Section III-B and III-
D. Figure 5 illustrates the ontology. The ontology contains
MemberFarm class which has detailed knowledge about the
overall functionality in our ecosystem. Below we describe
the major classes and important properties of our smart farm
ontology:

1) CLASSES
• MemberFarm class: This class describes various inter-
actions that happen on an individual member farm.
Information such as current sensors owned, employed
workers in the individual farm are also present. It has a
subclass named HBU.

• HBU class: This class represents a hub setup by the
owner that monitors all the interactions that happen in
the farm. It also provides information about ongoing
operations in the individual member farm. The individ-
ual member farm owners keep track on the status of
sensors deployed based on the provided information.

• WBU class: This class represents workers employed
by the member farm. It provides information about
the workers such as name, working hours, etc. The
employed workers can operate sensors present in the
member farm based on access permissions granted by
individual member farm owners.

• Sensor class: This class represents physical sensors
deployed by the member farm owners. It plays an impor-
tant role in handling the data collected from different
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FIGURE 6. Cooperative agriculture ontology.

member farm owned sensors. It has two subclasses:
OBU, FBU.

• FBU class: Sensors such as humidity, temperature,
sprinklers, etc.are represented as instances of FBU class.
These sensors have the capability of measuring a physi-
cal phenomena which in turn is treated as a data point.

• OBU class: This class describes status about different
types of movable machinery like tractors, harvesters,
agricultural drones that are represented as individuals.

• Observation class: This class represents the observations
recorded by the subclasses of sensor class.

• SensorData class: This class represents the data points
generated by different types ofFBU class andOBU class

• Time class: This class represents the temporal informa-
tion. It provides a means for recording the time corre-
sponding to various observations.

2) RELATIONSHIPS
• owns: This link between the subject entity as member
farm and object entity as sensor indicates the sensors
owned by the individual member farms.
Domain: MemberFarm
Range: Sensor

• employs: Relationship indicates the employed workers
on the member farms.
Domain: MemberFarm
Range: WBU

• makeObservation: Represents the relation between Sen-
sorData class and Observation class. This property indi-
cates the presence of data values for each subclasses of
the sensor.
Domain: Sensor
Range: Observation

• hasData: Represents the relation between Observation
class and SensorData class. This property indicates the
presence of data values for each subclass.
Domain: Observation
Range: SensorData

• hasTime: Relationship where the subject entity belongs
to Observation class and object entity belongs to Time
class. This helps assert the time when sensor data was
recorded.
Domain: Observation
Range: Time

• access: Represents the relation between WBU and a
Sensor. It provides details like whether the instance of
WBU can access various Sensors (e.g. OBU, FBU) or
not.
Domain: WBU
Range: Sensor

B. COOPERATIVE AGRICULTURE ONTOLOGY
We have developed a semantically rich co-op agriculture
ontology to capture data from various interactions discussed
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in section III-D. Figure 6, depicts the cooperatives agriculture
ontology that contains four main classes namely, CBU class
represents the cooperative provider, Unit class represents the
resources present in co-op, MemberFarm class represents
individual member farm owners that are part of co-op, and
Agreement class represents legal components of co-op. The
classes and properties of our ontology are further described
below:

1) CBU class: This is an important class in our ontology
which connects to other classes through its proper-
ties. It represents organization structure of co-op which
monitors all permitted interactions and supports multi-
plemember farms that agree to the terms and conditions
of the co-op.

2) Unit class: This class provides the detail of the
employed workers and description of all the equipment
owned by the co-op. It has sub-classes named CWBU,
COBU, and CFBU. The CWBU class has details about
the employed workers and various other attributes like,
speciality, necessary information to operate, etc. The
COBU class has various details that describe and rep-
resent heavy machinery owned by the CBU class. The
CFBU class describes a individual sensors, namely,
automated water sprinkler, pest repeller, etc. owned
by the co-op. Both COBU and CFBU classes have
properties that determine the ownership of data during
a particular duration.

3) MemberFarm class: The member farm owners that
have signed the co-op agreement and abide by the
rules of co-op are considered as instances of this class.
The co-op ontology uses the MemberFarm class from
member farm ontology. Therefore, it has access to
details about member farm owners such as their capital
investment, borrowed resources, contact information,
etc. Some member farm owners even share some of
their farm data with theCBU for better analysis of crop.
The cooperative agriculture ontology contains Mem-
berFarm class that denotes concepts same as of the
MemberFarm class in Member Farm ontology. There-
fore, the MemberClass in Member Farm ontology and
co-op agriculture ontology refers to the same instances
such as individual member farm owners of the co-op
and are linked with the help of owl property such as
sameAs. We describe above in detail about the Mem-
ber Farm class in the Member Farm ontology that is
later linked to the co-op ontology to assist the co-op
in sharing of co-op resources with individual member
farm owners.

4) Agreement class: An entity of abstraction for securing
the co-op farm ecosystem represents the access control
of cooperatives (See Section III-C). It has four sub-
classes in our ontology: Security, Privacy, Compliance
and Ownership.

5) Schedule class: This class contains details such as
leasing period of co-op owned resources that are bor-
rowed by member farms. It provides information about

the availability of resources whenever an individual
member farm requests the CBU to borrow a co-op
resource.

Below we describe some of the object and data properties
present in our co-op agriculture ontology -

• hasMember: This property indicates that the individual
farm members of the co-op where the subject entity
indicatesCBU class and object entity indicatesMember-
Farm class.
Domain: CBU
Range: MemberFarm

• contains: This object property determines the presence
of the resources owned by the co-op. It connects theCBU
class and the Unit class to gather details about the co-op
owned resources.
Domain: CBU
Range: Units

• presents: This object property links the CBU class and
agreement class to defines contents of the agreement that
is abide by the CBU in order to maintain secured co-op
ecosystem.
Domain: CBU
Range: Agreement

• hasTemporaryAccess: This object property describes the
temporary ownership of the co-op resources obtained by
the member farm owners.
Domain: MemberFarm
Range: CWBU, COBU, CFBU

• hasPermission: This object property describes the per-
mission for the co-op worker to operate devices in the
member farm.
Domain: CWBU
Range: COBU, CFBU

• agreementToUnit: This is an object property which
describes agreements related to co-op owned resources.
Domain: Agreement
Range: Unit

• hasSchedule: This object property determines the start
and stop time of every borrowed resource that belongs
to the Unit class.
Domain: Unit
Range: Schedule

V. AGRICULTURAL CO-OP USE-CASES
In this section, we use the ontology to showcase various
agricultural co-op use-cases. Our ontology is descriptive
enough to model and showcase complex co-op interactions
here, we showcase three use-cases that illustrate complex
situations that arise when a member farm borrows equipment
from the co-op. We also discuss a data sharing use-case
between borrowed equipment and other deployed mem-
ber farm units. Similar use-cases can be created for bor-
rowed sensors and workers. Some of these interactions are
represented and stored in the co-op cloud representation
graph.
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FIGURE 7. Member farm borrows equipment use case.

FIGURE 8. Data sharing between member farm units and borrowed equipment use case.

A. MEMBER FARM BORROWS EQUIPMENT
In this scenario a member farm ‘Member_Farm_1’ wishes to
borrow an agriculture drone, ‘ag_drone_1’ from the co-op.
‘Member_Farm_1’ is an instance of the class MemberFarm,
‘ag_drone_1’ is an instance of class COBU. The borrow
request with details about the time schedule reaches the co-op
hub, ‘co-op_1’ and it evaluates the request (See Step 1 in
Figure 7). If the co-op is able to honor the request, it com-
putes a response and communicates it to ‘Member_Farm_1’
including the details about ‘ag_drone_1’. The member farm
initializes the resources for the incoming equipment. It cre-
ates a local instance, ‘ag_drone_1_local’ for the incoming
‘ag_drone_1’ and sets various properties required, especially
the time schedule (See Step 2 in Figure 7). The local instance
is used to ensure data security and privacy in the next use-case
showcasing data sharing.

B. DATA SHARING BETWEEN MEMBER FARM UNITS AND
BORROWED EQUIPMENT
The ‘ag_drone_1_local’ instance created previously, com-
municates with existing deployed FBUs, OBUs and other
WBUs according to various policies and rules dictated by the
farm owner. The data generated by the ‘ag_drone_1_local’ is
stored in the representation graph of the individual member
farm unit (See Figure 8). For the borrowed agricultural drone,
the data can include farm images and its interaction with other
deployed sensors; along with various internal drone perfor-
mance data points and metrics. These interactions continue

till the expiry of the borrowed time. Keeping in compli-
ance with the co-op agreement, at the end of the borrowed
time decisions regarding data privacy and access control
need to be made. Only specific contents of data generated
by FBUs, WBUs and OBUs is shared with the borrowed
‘ag_drone_1_local’ during these interactions. Well defined
co-op agreements helps in evaluating the contents of shared
data to maintain privacy of individual member farm.

C. MEMBER FARM RETURNS EQUIPMENT
Once the borrowing time expires, the ‘Member_Farm_1’,
disassociates the local instance ‘ag_drone_1_local’, with
the borrowed ‘ag_drone_1’. During this process ‘Mem-
ber_Farm_1’, stores a record of all the data collected in
it’s representational graph with ‘ag_drone_1_local’ (See
Step 1 in Figure 9).
According to the co-op agreement, ‘Member_Farm_1’

encrypts various farm specific private data. However,
it allows ‘co-op_1’ access to the pre-negotiated data, which
can include internal drone performance data points and met-
rics, that can be used by ‘co-op_1’ to maintain ‘ag_drone_1’.

At the end of the process ‘ag_drone_1’ returns to
‘co-op_1’, where it can be borrowed by a member farm (See
Step 2 in Figure 9).

VI. AI ASSISTED SMART CO-OP APPLICATIONS
Deploying integrated AI with CPS technologies at the co-op
level will help create various applications that will benefit
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FIGURE 9. Member farm returns equipment use case.

FIGURE 10. Smart co-op AI applications.

individual member farmers. Some of these proposed appli-
cations in different areas with major societal implications are
depicted in Figure 10.

Aswe build these AI applications [92], ontologies will play
a central role in the process. Ontologies have been used in
expert systems to assert data and domain knowledge. Ontolo-
gies described in Section IV can play a central role in creation
of these systems when coupled with other domain describing
ontologies. Some of the ontology assisted AI applications in
other domains have been discussed in Section II.
Next we discuss various AI applications that can be devel-

oped for the co-op ecosystem that benefits member farmers,
broadly addressed in four categories such as (i) Marketing
and Distribution, (ii) Resources and Equipment, (iii) Labor,
(iv) Service and Supply.

A. MARKETING & DISTRIBUTION
1) MONITORING, MARKETING & DISTRIBUTION OF
PRODUCE
In a co-op, member farms produce different quality of
crops/produce. The co-op canmonitor the quality of the crops
produced bymember farmers by analyzing the historic sensor
values for a particular crop, and use AI to compare it with
other member farms. This ‘relative’ crop analysis can help a
co-op recommend suitable marketing locations and price to
member farms.

The co-op hub, with help of AI tools, can track the grain
or produce in the market that offer the best price/purchase
value to the co-op member farms. The tracked information is
communicated to the member farms regarding prices offered
by direct consumers and near-by markets. A co-op can also
monitor various market conditions and recommend member
farms to grow produce ideally suited for their farm conditions.

Another advantage of having a smart co-op environment
is in the co-op packing and processing tasks [93]. A co-op
can use deployed sensors and AI systems to group and stan-
dardized quality of crops/produce. This is specially impor-
tant when a co-op sells produce to large-volume venues like
schools and hospitals as they need products in standardized
quality and packs. A smart co-op can help ensure such crops
standardization in sufficient quantity and quality.

2) USE OF SENSOR DATA TO AID IN CROP CERTIFICATION
Food production and farming are a highly regulated industry
with different countries having multiple national agencies
monitoring food production. In the United States, Environ-
ment Protection Agency [89] and the Department of Agricul-
ture [90] enforce various regulations and industry standards.
In the European Union, Department of Agriculture and Rural
Development [91] undertakes this responsibility with similar
authorities in other countries. These federal authorities issue
compliance directives to ensure quality food production.With
the advent of smart farming technology these agencies are
relying more and more on data produced by farm based
sensors.

A co-op growing produce can use the sensors deployed on
various member farms to provide data that can be used for
crop certification. This can include data from soil sensors, fer-
tilizer sprinklers, soil organic matter sensors, seed and stock
usage data, water and irrigation sensors, etc. An example
certification process that can benefit from a smart co-op setup
is the USDA organic crop certification.12

B. RESOURCES & EQUIPMENT
1) PROCUREMENT DECISION SUPPORT SYSTEMS
In order to aid in resource or machinery procurement,
the co-op can create/utilize various decision support

12https://www.ams.usda.gov/sites/default/files/media/Crop%20-
%20Guidelines.pdf
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systems [94]. Shared data, acquired from the deployed sen-
sors of member farms, helps the co-op to analyze resource
requirements like quantity of fertilizers and type of advanced
machinery needed (e.g., automatic in-row weeders13 or smart
turf harvesters14) to increase productivity. For example, the
co-op can make yearly decisions about the new machinery
that can be purchased to increase quality and maximize the
crop value of member farms. This can be done by analyzing
the shared data from previous years.

Additionally, with the help of edge computing applica-
tions, a member farm owner can utilize co-op benefits inmak-
ing purchase decisions. For example, based on edge analytics,
the HBU of the member farms can request and reserve slots
(from the co-op) for additional machinery/resources like soil
nutrition guards, trucks, and harvesting tools. This can help in
making early decisions which in turn, help in avoiding effects
of late harvesting such as decreased crop yield, damage of the
crop due to sudden change in weather conditions, and pests
that decreases the quality of the yield.

2) SCHEDULING DEMAND FOR MACHINERY
An AI based self learning application can be designed to
schedule the usage of resources by keeping track on the
availability of machinery owned by the co-op. Information
such as extreme weather conditions and early maturity/status
of the yield can be predicted by analyzing data from various
sensors. Consequently, a co-op can efficiently schedule the
usage of machinery with member farm owners. In particular,
during critical weather conditions and harvesting seasons, the
demand for machinery increases significantly [95]. At this
time, scheduling machinery usage in advance based on the
data collected using various smart sensors across the co-op
member farms becomes vital. Accordingly, anAI based appli-
cation that provides scheduling recommendations by consid-
ering data from OBUs, WBUs, and FBUs of member farms
can help in planning, reducing shortage of resources, and
avoiding conflicts of utilization.

3) PREDICTIVE MAINTENANCE OF MACHINERY
A co-op (CBU) can leverage a proactive prediction strat-
egy [96] to improve the efficiency of resources and machin-
ery equipment by identifying patterns in the data collected
from the smart sensors (COBU). In the proposed application,
abnormal behavior of the COBU can be tracked to optimize
maintenance costs and reduce breakdowns. This is done by
notifying the CBU about an abnormal behavior that does not
conform to the expected normal conditions and performance
of the equipment occurred in the past. For example, the CBU
received a minor repair alert about a COBU which is outside
of its actual maintenance scheduled date. The minor repair of
the COBU that has been identified can be fixed at an early
stage to reduce downtime service.

13https://garford.com/products/robocrop-inrow-weeder/
14https://www.ni.com/en-us/innovations/case-studies/19/smart-turf-

harvesting-machine-boosts-productivity-and-reduces-cost.html

We can also compare this to preventive maintenance of
cyber physical infrastructure and assets utilizing the digital
twin concept [62].

C. LABOR
1) SCHEDULING LABOR FOR PROPER UTILIZATION
One way of effectively using labor during peak season is
to make use of various AI models [97], [98]. Considering
the sensor data from member farms, the CBU can create
an efficient schedule for the CWBUs based on individual
requirements, expertise and availability. This is particularly
important to avoid problems such as inefficient labor utiliza-
tion or shortage of labor during peak season. Another AI
system [99] that can further aid the co-op members can be
built to identify and prioritizing member farms that are ready
to be harvested based on the time series analysis of their crop
data.

Co-ops using a data intensive system can also use such
a system to comply with labor regulation as mandated by
various state and fedral departments of labor. This system can
also be used to consult with insurance advisors about need for
insurance and workers compensation.

D. SERVICE & SUPPLY
1) A CO-OP EARLY WARNING SYSTEM
An early warning system [100] deployed at the co-op level
will aid the member farms by alerting them to events like,
crop diseases, pest management, weather, changing labor
costs, price fluctuations, etc. Information such as negotiated
interactions and data samples provided by the sensors that
are deployed in a member farm are first communicated to
the farm’s HBU and then passed to the co-op. The co-op
can utilize the shared data to create an early warning system
by using various AI tools to predict a crop disease or a pest
problem. For example, if a member farm has a higher use of
fertilizer than peers then the co-op can alert the HBU.

Similarly, member farms (HBU) can be alerted about
drought conditions and labor costs that could be predicted
with the help of the forecast model, and also be provided
guidance to mitigate the impact [101], [102]. For example,
CBU can detect a parasitic fungi [103] in the area and alert
the specific HBU. In this way the member farm can take
necessary actions such as using fungicides, disinfecting the
equipment to reduce the effect on the crop yield. The co-op
can also generate alerts for other member farms in the area,
or specific farms that have shared equipment or labor with
affected farm/farms.

2) ANALYSIS FOR MEMBER EXPENDITURE
Member farms are frequently faced with decisions to make.
Some decisions are critical to the farm budgetary. For exam-
ple, purchasing new equipment, renting or potentially sharing
the costs with other co-op members, financing, and labor
are all business decisions that can have substantial financial
impacts. According to a USDA report on farm production
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expenditures [104], labor is among the top five expenditures
by farms with an average of 9.6% in 2018. Some decisions
can result in immediate visible effects while others are less
visible long-term and need more time to be recognized.
For example, major changes in production practices require
detailed analysis to estimate the benefits and costs of this
decision. Evaluating all potential effects of these long-term
decisions is critical for member farms. A CBU can provide
AImember expenditure analysis service to help member farm
owners keep track of short and long term costs and provide
valuable insights. Decisions suggestions can be provided
based on shared information from other member farms. For
example, CBU can suggest a change of production practices
to help lowering the expenditures by analyzing other member
farms information.

VII. CONCLUSION
The growing demand for food production concerns the agri-
culture sector. In order to meet the food requirements of the
escalating population, individual farmers have started utiliz-
ing precision agriculture technologies. However, despite vari-
ous technological advancements, co-op ecosystems at present
have not fully exploited the applications of AI and Internet
connected devices. Therefore, in this paper we have created
ontologies and proposed AI applications that add value to the
smart farming co-op ecosystem. This paper first details the
cooperative ecosystem by describing various components in
the architecture, its elements, their interactions and the agree-
ments involved to ensure proper functioning of a cooperative.
Then we have developed ontologies for a cooperative and
individual member farms. Additionally, prototype agriculture
co-op use case scenarios are included that illustrate how
situations like sharing of resources are handled by the co-op
ecosystem. The paper also presents various AI applications in
different domains which would integrally benefit individual
member farm owners that are part of a co-op.
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