
ONLINE MALWARE DETECTION IN CLOUD AUTO-SCALING SYSTEMS USING

PERFORMANCE METRICS

by

MAHMOUD ABDELSALAM, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

COMMITTEE MEMBERS:
Prof. Ravi Sandhu, Ph. D., Co-Chair
Dr. Ram Krishnan, Ph.D., Co-Chair

Dr. Matthew Gibson, Ph.D.
Dr. Murtuza Jadliwala, Ph.D.

Dr. Gregory White, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
December 2018

Copyright 2018 Mahmoud Abdelsalam
All rights reserved.

DEDICATION

I would like to dedicate this dissertation to my beloved family.

ACKNOWLEDGEMENTS

My PhD journey has certainly been a great learning experience, on many different levels, and

there are many people who have had an impact and who deserve to be sincerely thanked.

Thanks to my supervisors, Prof. Ravi Sandhu and Dr. Ram Krishnan, for their diligent efforts

and close mentoring. Their vast knowledge, wisdom, continuous guidance and support of my

research have helped shape the contributions in this dissertation. This dissertation would not have

been accomplished without their inspiration and encouragement.

I would also like to thank my Ph.D committee members Dr. Mathew Gibson, Dr. Murtuza

Jadliwala, and Dr. Gregory White for their time and insightful comments.

I would like to thank my dear wife, Elham, and my lovely daughter, Dana, who have been with

me all these years and have made them the best years of my life. I am indebted to my parents,

Abdelsalam and Shokran, for all their love and blessings, and imbibing the values of life in me. I

appreciate all their sacrifices and value the lessons of life they have taught me growing up. I am

really grateful to my brothers, Mohamed and Khaled, and my sister, Ghada, for their continuous

and unparalleled love, help and support.

I would also like to express my gratitude to members of the ICS, Farhan Patwa, James Benson,

Suzanne Tanaka and Lisa Ho for their help and motivation. I am thankful to my colleagues at

UTSA, Maanak Gupta, Smriti Bhatt, Moustafa Saleh and Sajad Khorsandroo and others for their

companionship, useful discussions and ideas.

Finally, thanks to NSF (CNS-1553696) and DoD (DoD W911NF-15-1-0518) for supporting

this research.

December 2018

iv

ONLINE MALWARE DETECTION IN CLOUD AUTO-SCALING SYSTEMS USING

PERFORMANCE METRICS

Mahmoud Abdelsalam, Ph.D.
The University of Texas at San Antonio, 2018

Supervising Professors: Prof. Ravi Sandhu, Ph. D. and Dr. Ram Krishnan, Ph.D.

Cloud computing is becoming increasingly popular among organizations. The Infrastructure

as a Service (IaaS) cloud computing model has become an attractive solution because of the abil-

ity of reducing costs and improving resource utilization. Such cloud services are expected to be

always available and reliable as per the Service Level Agreements (SLA) between the cloud ser-

vice providers (CSPs) and their customers. Cloud ecosystems have also become attractive targets

to attackers because of the massive amount of data residing on the cloud as well as the massive

processing power that can be recruited for malicious intent. Thus, security is a very critical task

in cloud ecosystems and the need of continuous security monitoring in the cloud is mandatory for

detecting malicious activities.

This dissertation addresses the problem of online malware detection in cloud auto-scaling sys-

tems using performance metrics. First, we review the current state-of-the-art malware detection

techniques in general with a focus on techniques that target cloud IaaS, specifically virtual ma-

chines (VMs). We find that malware detection techniques that target VMs lack taking advantage

of cloud unique characteristics. Those techniques can be applied to VMs as well as stand alone

servers with nothing specific about cloud.

We then propose a malware detection framework that leverages cloud unique characteristics

(i.e. auto-scaling) using black-box features (performance metrics), where data are collected from

outside the VMs by the hypervisor in an auto-scaling scenario (e.g. three-tier web architecture with

scalability in place). Our approach assumes no prior knowledge of the installed applications on the

VMs. In this work, a modified version of sequential K-means clustering algorithm is used to group

similar VMs based on workloads (e.g. applications servers, web servers and database servers are

v

three different groups). Then, malware is detected as anomalies when one VM of the same group

exceeds a certain threshold.

Despite showing that highly active malware (e.g. ransomware) can be effectively detected by

inspecting the performance and resource utilization metrics of VMs as a black-box, this approach

is not as effective for detecting malware that maintains a low profile of resource utilization. Ac-

cordingly, we propose a white-box approach (where data are obtained from inside the VMs by

either the hypervisor or pre-installed agents) for detecting such malware using 2d and 3d Con-

volutional Neural Networks (CNN). 3d CNN classifiers are introduced to partially mitigate the

underestimated mislabeling problem.

The developed white-box approach achieved good results; however, it works only for single

VMs. To leverage auto-scalability, we extended the previous approach to handle multiple VMs

and introduced a new approach based on paired samples to accommodate for correlations between

VMs.

We evaluate the proposed approaches on synthetic data collected from our OpenStack (a pop-

ular open-source cloud IaaS software) testbed based on a standard 3-tier web architecture with the

ability to scale-up (when multiple copies of the server are spawned) and scale-down (where the

number of copies are reduced) on demand.

vi

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . v

List of Tables . xi

List of Figures . xii

LIST OF ABBREVIATIONS . xiv

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Problem and Thesis Statement . 5

1.2.1 Scope and Terminology . 5

1.2.2 Assumptions . 5

1.3 Key Contributions . 6

1.4 Related Publication . 7

1.5 Dissertation Organization . 8

Chapter 2: Background and Related Work . 9

2.1 Cloud Computing Security and Threats . 9

2.2 Machine Learning . 11

2.2.1 Supervised and Unsupervised Learning 11

2.2.2 Machine Learning Models and Techniques 12

2.3 Machine Learning Based Malware Detection . 16

2.3.1 Malware File Classification . 17

2.3.2 Online Malware Detection . 20

2.4 Cloud Malware Detection . 21

vii

Chapter 3: Black-box Online Malware Detection in Cloud IaaS 23

3.1 Introduction . 23

3.2 Cloud Monitoring Overview . 24

3.3 Clustering . 26

3.3.1 K-means . 27

3.3.2 Sequential K-means . 28

3.4 Framework Overview . 28

3.4.1 Features Definition . 29

3.4.2 Features Normalization . 29

3.4.3 Modified Sequential K-means . 30

3.4.4 Anomaly Detection . 32

3.4.5 Parameters tuning . 32

3.5 Experiments Setup . 33

3.5.1 Testbed Environment . 33

3.5.2 Use Case Application . 34

3.5.3 Traffic Generation . 35

3.6 Results and Discussion . 36

3.6.1 Injected Anomalies . 37

3.6.2 EDoS . 37

3.6.3 Ransomware . 38

3.7 Conclusion . 39

Chapter 4: Malware Detection in Cloud Infrastructures Using CNN 41

4.1 Introduction . 41

4.2 Methodology . 43

4.2.1 Convolutional Neural Network . 43

4.2.2 Process Performance Metrics . 44

4.2.3 CNN Input . 44

viii

4.3 Experiment Setup and Results . 47

4.3.1 Preprocessing . 47

4.3.2 CNN Model Architecture . 48

4.3.3 Parameters Tuning . 49

4.3.4 Experimental Setup . 50

4.3.5 Evaluation . 52

4.3.6 2d CNN Results . 53

4.3.7 3d CNN Results . 55

4.4 Discussion . 56

4.5 Conclusion . 58

Chapter 5: Online Malware Detection using Shallow Convolutional Neural Networks in

Cloud Auto-Scaling Systems . 59

5.1 Introduction . 59

5.2 Key Intuition . 61

5.3 Methodology . 64

5.3.1 Malware Detection in Multiple VMs using Single Samples (MVSS) 65

5.3.2 Malware Detection in Multiple VMs using Paired Samples (MVPS) 66

5.4 Experiment Setup and Results . 68

5.4.1 CNN Model Architecture . 68

5.4.2 Experimental Setup . 69

5.4.3 MVSS and MVPS Results . 70

5.5 Conclusion . 72

Chapter 6: Conclusion and Future Work . 73

6.1 Summary of Contributions . 73

6.2 Future Directions . 74

Bibliography . 78

ix

Vita

x

LIST OF TABLES

3.1 Black-box Virtual machines features/metrics 29

4.1 Virtual machines process-level performance metrics 45

xi

LIST OF FIGURES

2.1 Abstract of a feed forward deep neural network architecture 15

2.2 Categorization of machine learning based malware detection methods and

used features . 17

3.1 Cloud Monitoring Points . 24

3.2 Resource Layer Monitoring . 25

3.3 Service Layer Monitoring . 26

3.4 Testbed Setup . 33

3.5 3-tier web application . 34

3.6 Injected anomalies detection with tuned classifier 37

3.7 EDoS detection with tunned classifier . 38

3.8 KillDisk ransomware detection - Poisson 39

3.9 KillDisk ransomware detection - On/Off Pareto 39

4.1 CNN overview . 44

4.2 Proposed CNN Model . 48

4.3 3-tier web architecture . 50

4.4 Data collection overview . 51

4.5 2d CNN trained with different mini-batch sizes. Optimized with learning

rate of 1e-5 for AdamOptimizer . 53

4.6 2d CNN classifiers results . 54

4.7 Optimized 2d and 3d CNN classifiers results. 3d CNN classifiers are best

optimized with learning rate of 1e-4 as well as with 20 and 30 mini-batch

sizes, respectively. 55

4.8 Malware behavior of the network sent kBs metric. 57

xii

5.1 Number of used voluntarily context switches over 30 minutes for two dif-

ferent experiment runs of the same unique process. 62

5.2 Number of used voluntarily context switches over 30 minutes for one ex-

periment run of 10 VMs in an auto-scaling scenario. Red denotes a VM

with an injected malware. 62

5.3 Total number of standard processes versus the number of unique processes

in VMs running at the same time in an auto-scaling scenario. Red portions

represents the VM where a malware started executing. 64

5.4 Single VMs Single Samples (MVSS) . 65

5.5 Multiple VMs Single Samples (MVSS) 66

5.6 Multiple VMs Paired Samples (MVPS) 67

5.7 CNN Model (LeNet-5) . 68

5.8 Data collection overview . 70

5.9 Optimized MVSS CNN classifier results 70

5.10 Optimized MVPS CNN classifier results 71

xiii

LIST OF ABBREVIATIONS

AIS Artificial Immune Systems

ANN Artificial Neural Networks

CNN Convolutional Neural Networks

CSP Cloud Service Provider

DBSCAN Density-based Spatial Clustering of Applications with Noise

EDoS Economic Denial of Sustainability

FN False Negative

FP False Positive

GA Genetic Algorithm

GRU Gated Recurrent Units

IaaS Infrastructure as a Service

IDF Inverse Document Frequency

IDS Intrusion Detection System

KNN K-nearest Neighbors

LSTM Long Short Term Memory

ML Machine Learning

MLP Multi Layer Perceptron

NIDS Network Intrusion Detection System

NIST National Institute of Standards and Technology

xiv

PaaS Platform as a Service

RVSM Robust support vector machine

SaaS Software as a Service

SOM Self Organizing Map

TN True Negative

TP True Positive

VM Virtual Machine

xv

CHAPTER 1: INTRODUCTION

Organizations increasingly utilize cloud services such as Infrastructure as a Service (IaaS) where

virtualized IT infrastructure is offered on demand by cloud providers. A major challenge for cloud

providers is the security of virtual infrastructures that are provided to their customers. In particular,

a key concern is whether virtual machines (VMs) in the data center are performing tasks that are

not expected of those machines. Given the scale of data centers, continuous security monitoring of

the virtual assets is essential to detect malicious behavior.

Cloud infrastructure has become increasingly prone to novel attacks and malware [21, 31, 33,

34,39,90]. One of the most prevalent threats to cloud is malware. Cloud malware injection [34] is

a threat where an attacker injects a malware to manipulate the victim’s Virtual Machine (VM). Due

to the nature of the cloud and automatic provisioning, a large number of VMs are often similarly

configured. One example is when a web server scales-out due to increase in demand and scales-

in when the demand goes down. This means that the attack that compromised one of the VMs is

highly likely to compromise many of the other similar VMs. The attacker can inject a botware to be

used for creating a botnet due to a large number of VMs available in scaling scenarios. As a result,

the need for malware detection in VMs is critical. Consequentially, this dissertation addresses the

following questions:

Given an organization (known as a cloud tenant) that utilizes cloud services (i.e. VMs), what

mechanisms are available for online malware detection (also known as real-time malware de-

tection) in the utilized VMs using machine learning? How can auto-scaling, a cloud’s unique

characteristic, be leveraged for online malware detection in cloud?

1.1 Motivation

Cloud data centers are widely used for a range of always-on services across all the cloud deploy-

ment models (public, private, and hybrid). These data centers are used as an infrastructure for

resource pooling to multiple cloud tenants (cloud customers). Cloud tenants’ VMs need to be

1

secure and resilient in the face of the new attacks that are introduced, and will continue to be in-

troduced, because of the virtualization and cloud ecosystem nature. The following scenarios are

some of the cloud new threats.

Exploited system vulnerabilities. These are not new, but they’ve become a bigger issue with

the advent of multi-tenancy in cloud computing. Tenants share memory, databases, and other

resources in close proximity to one another, which creates new attack surfaces. Although attacks

on system vulnerabilities can be mitigated by existing mechanisms (e.g. vulnerability scanners), it

is still an issue that is yet to be completely solved.

Configuration vulnerabilities. Due to the nature of the cloud and automatic provisioning, a

large number of the VMs are similarly configured, hence many VMs have the same vulnerabilities

or misconfiguration. For example, a configuration script is used to spawn new VMs based on

workload (i.e., auto-scaling). This increase the chance that malware can infect many VMs as well

as sets an outstanding opportunity for attackers to target cloud systems.

Insider threats. Utilizing cloud resources means that a customer’s data security is as good

as the utilized cloud security. Insider threats can be a way of malware infection (no matter inten-

tionally or unintentionally). These can arise in many ways such as through a current or former

employee or a system administrator. The intent can go from data theft to revenge. For example, an

administrator who intentionally injects malware to steal sensitive customer data.

Compromised credentials. This can happen in many different ways from weak passwords to

leaving passwords in the open. For example, many developers make the mistake of embedding

credentials and cryptographic keys in source code and leaving them in public-facing repositories

e.g., GitHub.

The increased vulnerability surface acts as an entry point to large amount of malware, which

in turn is the initial step in launching large scale attacks such as DDoS, phishing or spamming. As

a result, the need for malware detection methods in cloud has become a necessity.

Most malware detection methods falls under two major techniques: static and dynamic analy-

sis. In static analysis, the aim to examine the executable/binary file itself before it actually runs on

2

the system. Two main approaches are used for static analysis. First, analysis can directly be done

on the binary file. One of the simplest forms of static analysis is extracting parts of the binary file

as features (n-grams). Second, executable can be disassembled or reverse engineered (convert from

binary to Assembly code) using dis-assemblers to get the actual code. Detection of malware takes

place on the actual code using different techniques. Then different machine learning techniques

can be applied for either of the aforementioned cases.

Although static analysis approaches are fast, cheap and, in fact, very effective, most sophis-

ticated malware can evade these methods by embedding syntactic code errors that will confuse

dis-assemblers but that will still function during actual execution. Polymorphic malware is able

to change and evolve while preserving code semantics. Nearly every malware is currently using

obfuscation, where binary and textual data is unreadable or hard to understand. Packing is an ob-

fuscation technique for evading static analysis approaches, where a malware is modified using a

run-time compression (or encryption) program.

Although, most sophisticated malware evade static analysis methods, their true malicious in-

tentions remains the same. For example, a malware that intends to steal secret keys of a target

system will continue to do so even if it is obfuscated. As a result, the need for behavior based

detection methods is critical.

Dynamic analysis approaches can help overcoming some of the static analysis drawbacks since

they rely on monitoring the behavior as opposed to static inspection. In dynamic analysis methods,

a malware executes, usually, in a closed environment (virtual machine, sandbox or emulator) and

its activities are monitored for few minutes. For infection prevention of the deliberately running

malware, a new clean environment is created/restored for each malware sample.

Although, dynamic analysis methods shows significant potential, they can be evaded in many

ways. First, delayed execution is a technique where a malware doesn’t show its malicious activities

for a long period of time which will deem the analysis process useless. Increasing the analysis

time is impractical and also ineffective since the malware can always increase its sleeping time

as well. Second, most malware tries to detect the presence of a sandbox or an emulator and,

3

once discovered, ceases its malicious activities. Third, most malware will not show any malicious

activities if there is no internet connection, since it usually tries to connect to its command and

control center.

Static and dynamic analysis are prevention mechanism in that they don’t actually run the exe-

cutable on the target system until they analyze and determine that it’s benign. Given the mentioned

drawbacks of static and dynamic analysis as well as the aforementioned new threats in cloud sys-

tems, it is a fact that malware will successfully execute on target VMs. The need for online malware

detection has become a necessity for cloud infrastructures.

As opposed to static and dynamic analysis, where a suspicious executable needs to be analyzed,

online malware detection is concerned about the whole system at all times. This overcome malware

not showing its malicious activities, since once it starts its malicious activities, it should be detected

and stopped. Fewer research has been done on online malware detection and even fewer has been

done for cloud specifically. Most of prior work employs modifications to traditional malware

detection techniques for a single VM.

In this dissertation, we are motivated by two facts.

• Due to the aforementioned drawbacks of static and dynamic analysis, prevention mecha-

nisms in place can be evaded.

• Due to the aforementioned new cloud threats, malware has found new ways of getting into

cloud VMs, bypassing any prevention mechanism.

Consequently, a fair assumption is that malware will always get into and execute in cloud

infrastructures. To that end, due to the nature of cloud systems, we focus on online malware

detection for cloud infrastructures. Unlike current research, we keep in mind the entire cloud

context as opposed to a traditional physical stand-alone system. In addition, we leverage auto-

scaling for online malware detection in cloud.

4

1.2 Problem and Thesis Statement

Malware is a critical threat to cloud and there will always be a way for the malware to infect cloud

infrastructures. Online malware detection using machine learning has been applied to stand-alone

systems; however, few research has specifically addressed the cloud. Consequentially, there is a

lack of practical online malware detection techniques that are specifically tailored to cloud. Such

techniques should rely on cloud unique characteristics and should thoroughly be investigated.

Cloud unique characteristic "auto-scaling" can effectively be utilized for online malware de-

tection within a single-tenant’s virtual resources, in black-box and white-box granularity using

performance metrics.

1.2.1 Scope and Terminology

Organizations that utilize cloud services can be any company or person that is a cloud customer.

They are also called cloud tenants. Online malware detection refers to behavior based techniques

that provide ongoing real-time monitoring for VMs in the cloud.

The work in this dissertation focuses on detecting malware within a single-tenant’s VMs. Al-

though categorizing the type of malware is a very interesting problem, it is out of scope of this

dissertation. Malware in the form of advanced persistent threats (APT) is also out of scope of this

dissertation. This dissertation focuses only on data-driven online (real-time) malware detection

using machine learning. Other malware detection techniques not using machine learning are out

of scope.

1.2.2 Assumptions

In this dissertation we make the following assumptions:

• Cloud infrastructures will be increasingly subjected to new classes of attacks and, in turn,

new ways of malware injection will be available. As a result, traditional static and dynamic

based malware detection techniques will be insufficient to prevent the execution of malware.

More generic online malware detection techniques, for malware that bypasses traditional in

5

place defense mechanisms (e.g. anti-viruses), are necessary.

• We make the assumption that VMs which are configured by the same configuration script

(e.g., web-servers VMs are all spawned using the same script) should behave similarly with-

out any significant deviations in their behaviors.

• Malware infection doesn’t occur in all VMs at the same time. For example, VMs that belong

to the same group/cluster (e.g., identically configured web-servers VMs) will not be infected

at exactly the same time.

1.3 Key Contributions

We developed a cloud security monitoring framework for anomaly detection in cloud IaaS. We did

so by leveraging the auto-scaling cloud characteristic and using a modified sequential K-means

clustering algorithm to group similar VMs. We applied the algorithm on a defined set of black-box

metrics (i.e. external collected metrics) that deal with the resource usage of VMs. The framework

proved to be successful against Economic Denial of Sustainability (EDoS) attacks and malware that

maintains high-profile behavior (i.e. resource-intensive activities such as ransomware) of resource

utilization.

The aforementioned approach is not as effective for detecting malware that maintains low-

profile behavior of resource utilization. As a result, we introduced and discussed an effective

malware detection approach in cloud infrastructure using Convolutional Neural Networks (CNN),

a deep learning approach. We initially employed a standard 2d CNN by training on metadata

available for each of the processes in a virtual machine obtained by means of the hypervisor. We

enhanced the CNN classifier accuracy by using a novel 3d CNN (where an input is a collection of

samples over a time interval), which greatly helped reduce mislabelled samples during data col-

lection and training. Our experiments are performed on data collected by running various malware

(mostly Trojans and Rootkits) on VMs. The malware used in our experiments are randomly se-

lected. This reduces the selection bias of known-to-be highly active malware for easy detection.

6

We demonstrated that our 2d CNN model reaches an accuracy of ' 79%, and our 3d CNN model

significantly improves the accuracy to ' 90%.

Further, we extended and built upon the white-box approach to leverage the existence of multi-

ple VMs in an auto-scaling scenario. First, we introduced Multiple VMs Single Samples (MVSS)

method which is similar to the approach used in Chapter 4 but targets multiple VMs using single

samples. MVSS achieved good results with an accuracy of' 90%. Then, inspired by the duplicate

questions problem, we introduced Multiple VMs Paired Samples (MVPS) which targets multiple

VMs using paired samples. MVPS takes the previous approach a step forward by pairing sam-

ples from multiple VMs which helps in finding correlations between the VMs. MVPS showed a

substantial improvement over MVSS with an accuracy of ' 96.9%.

1.4 Related Publication

Online malware detection using VMs black-box performance metrics based on the work in Chapter

3 was accepted for publication in IEEE CLOUD 2017.

• Mahmoud Abdelsalam, Ram Krishnan, Yufei Huang and Ravi Sandhu “Clustering-Based

IaaS Cloud Monitoring”, In Proceedings 10th IEEE International Conference on Cloud

Computing (CLOUD), Honolulu, Hawaii, June 25-30, 2017, 8 pages.

Overcoming the limitation of using VMs black-box performance metrics, a white-box (process-

level) performance metrics approach using CNN based on the work in Chapter 4 was accepted for

publication in IEEE CLOUD 2018.

• Mahmoud Abdelsalam, Ram Krishnan, and Ravi Sandhu “Malware Detection in Cloud In-

frastructures using Convolutional Neural Networks”, In Proceedings 11th IEEE Interna-

tional Conference on Cloud Computing (CLOUD), San Francisco, CA, July 2-7, 2018, 8

pages.

7

1.5 Dissertation Organization

In this chapter, the motivation behind of this work, the problem statement, the objectives and key

contributions are illustrated. The rest of the dissertation is organized as follows: Chapter 2 gives a

brief background on the major cloud threats and machine learning techniques. It also talks about

the current state of the art related work on malware detection using machine learning categorized

in static and dynamic analysis. Then, it layouts the few research work on machine learning based

malware detection that specifically target cloud. Chapter 3 gives a detailed description on the use

of black-box features for anomaly detection in the cloud while leveraging auto-scaling character-

istic. It targets highly active malware (e.g, ransomware). A developed framework and testbed are

presented as well as testing and evaluation. Chapter 4 discusses the feasibility of using CNN and

process-level performance metrics for online malware detection. It points out the general misla-

beling problem and its solutions using 3d CNN. It targets malware that maintains a low-profile

through-out its execution life. Chapter 5 extends the previous work by targeting multiple VMs

as opposed to a single VM. It also introduces a new approach based on paired samples. Finally,

Chapter 6 summarizes and concludes the dissertation and gives an overview of the potential future

work.

8

CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 Cloud Computing Security and Threats

Cloud computing is a broad term which includes the on-demand delivery of computing power,

storage, networks, applications, and other IT resources through a cloud services platform with a

pay-as-you-go pricing model. There are several definitions of cloud computing in the literature

[30, 81]. In this dissertation we follow the standard definition provided by NIST [56]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction. This cloud

model is composed of five essential characteristics, three service models, and four

deployment models.”

Most cloud definitions, including NIST’s, include system levels. Cloud security monitoring takes

place at each of the following levels:

• Physical/Server: Includes computer hardware (e.g. physical machines, networks and other

devices).

• Infrastructure as a Service (IaaS): Cloud infrastructure such as Virtual machines, networks,

and storage.

• Platform as a Service (PaaS): Platform services such as run-time environments.

• Software as a Service (SaaS): Cloud applications over the Internet typically without the need

of software installation or the clients.

Online malware detection on the physical level, which is is usually data centers made of clusters,

can use the traditional distributed system techniques. However, malware detection on the other

9

virtualized layers needs more sophisticated frameworks since each layer has different characteris-

tics. There are two visions [57] regarding cloud security: a) Client vision: where the client (tenant)

can monitor only resources that belongs to him, without considering the whole cloud resources.

b) Cloud service provider (CSP) vision: where the CSP can monitor the whole cloud system with

outside access to clients’ resources information. We need to consider such visions when dealing

with cloud malware detection because of many reasons including privacy concerns of which data

is allowed to be access by the CSP and which resources are available to be used by the tenant.

Cloud platforms have become very attractive to customers due to their essential characteris-

tics (such as rapid elasticity, on-demand self-service, migration, controlled measured service and

resource pooling). With its increased adoption by many organizations, cloud has become more

attractive to attackers as well. For example, a large number of VMs are spawned daily on the cloud

which can be used by attackers to create bot-nets. Understanding these threats and vulnerabilities

is the first step toward better cloud security.

In [21,31,33,34,39,90], the authors discuss the vulnerabilities that exist due to cloud properties.

One of the most prevalent threats to cloud is malware. Cloud malware injection [34] is a threat

where an attacker injects a malware to manipulate the victim’s VM. This applies to stand-alone

systems as well as clouds. However, due to the nature of the cloud and automatic provisioning, a

large number of the VMs are similarly configured. One example is when a web server scales-up

due to increase in demand and scales-down when the demand goes down. This means that the

attack that compromised one of the VMs is highly likely to compromise many of the other VMs.

For example, an attacker can inject a bot-ware to use it for creating a bot-net due to the large

number of VMs.

One of the characteristics of the cloud is the pay-as-you-go pricing model. This also introduced

new threats. Economic Denial of Sustainability (EDoS) [75] is a threat where the attacker tries

to manipulate the pricing model either by generating traffic not high enough to be detected as a

Denial of Service (DoS) attack but high enough to cost the customer substantial financial loss or by

somehow getting unauthorized access to the customer’s management interface and creating many

10

VMs that remain dormant (to be undetectable) which also costs money.

VM co-residence is another threat due to the characteristic of multi-tenancy in clouds. VM co-

residency means that multiple independent customers’ VMs may be placed on the same physical

server. This introduce certain issues such as cross-VM attack [67] which allows for shared memory

attacks or side-channels attacks. VM image manipulation [32] is another threat where the attacker

manipulates a victim’s image which used to create new VMs.

Additionally, DoS/Flooding attacks seem to be applicable to normal systems as well as VMs in

cloud. However a new class of DoS attacks exist because of the co-residency of VMs. These types

of DoS attacks are called Indirect Denial of Service [39]. In this attack an attacker can launch a

DoS attack on another VM that doesn’t belong to the victim but is on the same physical server.

Most probably, this leads to scaling-up and automatic provisioning of other VMs which consumes

the resources on the physical server. As a side effect, the victim’s VM (i.e. the co-resident VM) is

affected by this DoS attack as well.

2.2 Machine Learning

Machine learning has been used as a behavioral-based anomaly detection technique to learn about

the VMs behavior and in turn detect anomalies (abnormal behavior). Some techniques use labeled

training data such as supervised learning whereas others assume no prior knowledge of the data

such as unsupervised learning.

2.2.1 Supervised and Unsupervised Learning

Supervised learning: having an input and output variables x and y, respectively, an algorithm is

used to learn the mapping function y = f(x). The goal is to approximate the mapping function

so that when a new input x is given, the algorithm predicts the output value y. In simple words,

the process takes training data samples, creates a generalization, and assumes that any future data

will follow that generalization. Supervised learning is sometimes referred to as inductive learning

because it goes from specific examples to more generalized rules. Supervised learning is mainly

11

classified into two categories of problems: regression and classification. Regression problems is

when the output variable is a real value, such as “weight”, while classification problems is when

the output variable is a category such as “color”.

Unsupervised learning: having an input data x without any corresponding output and the goal

is to derive the underlying structure in the data in order to learn more about the data. Unlike super-

vised learning algorithms, unsupervised learning algorithms are supposed to discover interesting

structure of the data on their own without a teacher to correct them. There are mainly two main

categories of problems in unsupervised learning: clustering and associative. Clustering problems

is when the goal is to group data samples with similar features together. Associative problems

is when the goal is to discover rules that describe large portion of the data. For example, most

customers that tend to buy X also buy Y.

2.2.2 Machine Learning Models and Techniques

Artificial Neural Networks (ANNs) are computational model which is based on large number of

interconnected artificial neurons [36]. They are analogous to a human brain. The input data acti-

vates neurons in the first layer which in turn produces output as input data of the second layer. Each

layer passes its output as an input to the next layer. Middle layers are called hidden layer. In the

case of classification problem, the final output is a label to the classified category. Self Organizing

Map (SOM) [44] is an unsupervised model that is very commonly applied to anomaly detection.

Although it falls in the category of ANNs, it is also considered to be a clustering technique, which

produce lower dimensional (typically two-dimensional) representations of multi-dimensional data,

which is called a map.

A Bayesian network is a probabilistic graphical model that represents a set of random variables

and their relationships (conditional dependencies) by a directed acyclic graph (DAG) [60]. Nodes

maintain the states of random variables and the conditional probability form (if applicable). Edges

represent conditional dependencies. Nodes that are not connected to each other represent variables

that are conditionally independent of each other. Each node has probability function that takes

12

a set of values for the node’s parent variables as input, and gives the probability of the variable

represented by the node.

Clustering is an unsupervised technique to group similar data samples into clusters. There are

several techniques [11, 51] for clustering the input data. K-means is a centroid based clustering

technique where data points are grouped based on their distance to each other. Each cluster is rep-

resented by its centroid which is a mean vector that includes all dimensions. Density-based spatial

clustering of applications with noise (DBSCAN) [29] is a density based clustering models group

the points that are closely packed together (points with many nearby neighbors), while marking (as

outliers) points that lie in low-density regions. K-nearest neighbors (K-NN) is an instance-based

learning (sometimes referred to as lazy learning) algorithm. It is used in classification problems

where the classification of points is determined by the k nearest neighbors of that data point.

Decision tree is a tree-list structure that builds classification or regression models. The leaves

represents the classification while the branches represents the features that lead to those classifica-

tions. The final result is a tree with decision nodes and leaf nodes. The most commonly and widely

used decision trees algorithms are ID3 [65], C4.5 [66, 68] and CART [69].

In simple words, a Support Vector Machine (SVM) [13, 18, 78] is a classification technique

where given labeled training data (supervised learning), the algorithm outputs an optimal hyper-

plane which categorizes new examples. SVM is a classifier formally defined by a separating hyper-

plane of the feature space into two classes in which the distance between the hyperplane and closest

data points of each class is as far as possible. When data are not labeled (i.e. supervised learning

is not possible), an unsupervised learning approach can be used. Support vector clustering [9]

attempts to find natural clustering of the data to groups and map new data to these groups.

Detecting anomalies doesn’t necessary means detecting malicious activities. Anomalies can be

divided into two categorizes: benign and malicious. Benign anomalies usually deal with system

failures (e.g. unresponsive server) while malicious anomalies deal with attacks (e.g. malware).

Unsupervised techniques is more suitable and more widely used for anomaly detection, since la-

beling thousands, or even millions, of records is a hard laborious task and mislabeling can occur.

13

SVMs are supervised learning algorithms which have been used increasingly for anomaly de-

tection. One of the primary benefits of SVMs is that they learn very effectively from high di-

mensional data [12] and they are trained very quickly compared with Multi Layer Perceptrons

(MLPs) [59, 77]. Most SVM algorithms are binary classifiers (e.g., normal and anomalous data).

However, there are other SVM algorithms, which have been proposed, support multi-class learn-

ing [19,26]. Furthermore, one-class SVM was proposed by [71] and has been used in many papers.

Robust support vector machines (RVSMs) [76], a variation of SVM, was used in [37] for

anomaly detection. The study used the 1998 DARPA BSM data set collected at MIT’s Lincoln

Labs. It showed a good classification performance in the presence of noise with 75% accuracy

and no false alarms, and 100% accuracy with a 3% false alarms. [74] developed a framework for

intrusion detection in network traffic. A combination of SOM, Genetic Algorithms (GAs), and

SVM was used. SOM was used for packet profiling, GAs was used for features selection, and data

were classified using the enhanced SVM.

One of the most used techniques, which falls under the umbrella of anomaly detection, is

Intrusion Detection Systems (IDS). The work in [50] gave a comprehensive overview of the ap-

proaches for IDS. Mainly, it is categorized into two approaches: signature-based and anomaly-

based. Signature-based approach is an effective method for known attacks, however it is not effec-

tive to detect unknown attacks or even a variant of a known attack since it depends on a signature

of known attacks. Behavioral-based anomaly detection approaches are effective against new at-

tacks; However, they suffer from accuracy and false alarms rate. In Chapter 3, a behavioral-based

anomaly detection approach for online malware detection is used for VMs that belongs to a single

tenant.

The work in [17] gives a summary of the different techniques for anomaly detection. In this

work, a framework for choosing the right anomaly detection technique is presented. The key com-

ponents include the research area, nature of data, data labels, anomaly type, application domain

and output. These components must be determined carefully based on the situation. Although

more than one anomaly detection technique can be suitable for a single situation, each technique

14

Hidden Layers

Input Layer

Output LayerInput V
ector

P
rediction

Figure 2.1: Abstract of a feed forward deep neural network architecture

has its own drawbacks. The work in [17] also categorizes the anomaly detection techniques into

classification based, clustering based, nearest neighbor based and statistical based. Statistical tech-

niques [85,86] for anomaly detection are being used, but suffer performance overhead due to their

complexity, lack of scalability and the need of prior knowledge.

Figure 2.1 depicts a traditional deep neural network (DNN) architecture. The leftmost layer

of a DNN is called the input layer, and the rightmost layer the output layer (which has only one

node in this figure). The middle layers of nodes are called the hidden layers.

Hidden Unit is the most basic component in DNNs. It is a computational unit that takes an

input feature vector x = [x1, x2, ..., xn] and outputs y = f(
∑n

i=1(Wixi + b)), where b is the bias,

Wi is the weights matrix, and f : R → R is referred to as the activation function. The activation

function, usually denoted by f(.), determines the unit’s output and introduces non-linearity in the

neural network. Without a non-linear activation function, no matter how many hidden layers the

network has, the network will behave like a single-layer perceptron, because, at the end, summing

these layers gives another linear function.

Hidden Layer is the highest-level component in DNNs. Each layer consists of many of the

aforementioned hidden units. Typically, a DNN consists of n layers where layer 1 is the input

layer and layer n is the output layer. A hidden layer usually receives the previous hidden layer’s

output vector as its input and outputs a new feature vector yl = (Wlyl−1 + bl) as input for the next

15

layer, where yl is the output feature vector and Wl, bl are the weights matrix and the bias for layer

l. The advantage of having multiple layers is that they add levels of abstraction that cannot be as

simply contained within a single layer.

Input/Output Layers are the left most and right most layers of a DNN, respectively. Mostly,

DNNs are used for classification problems, so the input layer takes an input vector which represents

the object to be classified and is passed to the hidden layers for processing. Depending on the

problem, the output layer deals with the transformed vectors sent by the last of the hidden layers.

In case of classification, the output layer transforms the output (received from the last hidden layer)

to a probability distribution representing the estimated probabilities that an object belongs to each

class.

2.3 Machine Learning Based Malware Detection

This section provides an abbreviated introduction to the major machine learning based malware

detection techniques. Although we only focus on malware detection in cloud infrastructures, we

review general malware detection approaches using machine learning because approaches that

work for stand-alone systems can as well be applied to cloud systems. Figure 2.2 gives a broad

overview of the machine learning based malware detection techniques and the extracted features.

Generally, malware detection techniques falls under one of the two categories: online malware

detection and file classification.

In file classification approaches, an executable binary file is given and the task is to classify

whether it is a malware or not by running it (usually in an isolated environment) and observing

its behavior. These approaches are used for malware prevention. Once an executable is classified

as benign, then it actually run on the operating system without further monitoring. The majority

of malware file classification techniques are further categorized under one of the two approaches:

static analysis (where an executable is analyzed without actually running it) or dynamic analysis

(where an executable run and its behavior is analyzed). Mainly, static analysis techniques make

use of three major categories of features: Binary N-grams, Control Flow Graphs (CFGs) and Static

16

Features Extraction

Machine Learning Based Malware Detection

File ClassificationOnline Malware Detection

Static AnalysisDynamic Analysis

Binary N-grams Control Flow
Graphs (CFG) Static API callsSystem callsMemory featuresPerformance

metrics

Figure 2.2: Categorization of machine learning based malware detection methods and used fea-
tures

features/Disassembling, while dynamic analysis techniques make use of system/API calls features.

On the other hand, in online detection approaches, the whole system is under continuous online

monitoring for the presence of malware. They focus on more dynamic and time series features

such as performance metrics, memory features or system/API calls. Such approaches are more

expensive in terms of performance; however, they mitigate drawbacks such as detecting malware

in an already checked benign application that got infected later on.

2.3.1 Malware File Classification

Static Analysis

During static analysis, no execution of executables/binary files takes place. It is the process of

analyzing executables by examining their code without actually executing them. There are two

approaches used for static analysis. First, an executable file can be disassembled or reverse en-

gineered using disassemblers to get the actual code. Then detection of malware takes place on

the actual code. Most sophisticated malware can evade this method by embedding syntactic code

errors that will confuse disassemblers but that will still function during actual execution. Second,

analysis can be done directly on a binary file format. For example, one of the simplest forms of

static analysis, is extracting parts of the binary file as features (n-grams). Then ML techniques are

17

used to find malicious patterns.

In the work done by Tahan et al. [79], the approach is to remove n-grams that are known to be

benign. For example, a worm that distributes itself via emails contains code to send an email which

is benign in many applications, so removing these segments from the file, while comparing what

is left to known malicious segments is a valid approach. The paper used different ML techniques

including ANN and Decision Trees. The works in [2, 45, 73] are similar but use different ML

algorithms, where the slight differences mostly lie in how to filter out common n-grams.

Saxe and Berlin [70] use four types of features extracted (and constructed) from executable

binary files: contextual byte features, portable executable (PE) import features, string 2d histogram

features and PE metadata features. These features are fed to a four layers deep neural network and

then a score calibration model is used to determine the probability of an executable being malware.

Similarly, [72] uses deep learning approach for malware static analysis.

Other research [27, 28, 40] disassemble the executables and extract features based on control

flow graphs or API/function calls names. The extracted features are used as input to different ML

techniques.

Most sophisticated malware has polymorphic nature. It constantly changes and evolves to

evade anti-virus software. Evolution of the malware can be done in different ways such as compres-

sion and encryption (code obfuscation techniques). Such sophisticated malware obstructs the ef-

fectiveness of static approaches. Although, due to such obfuscation techniques, malware changes,

the essential function usually remains the same. For example, a ransomware that intends to en-

crypt a victim’s machine will continue to perform such function even though its signature changes.

Dynamic analysis approaches can help overcome some of the static analysis drawbacks since they

rely on monitoring the behavior as opposed to static inspection.

Dynamic Analysis

In dynamic analysis, the executable is executed, typically, in an isolated environment (e.g., sandbox

or VM) and information is gathered during execution (e.g., system calls, memory accesses or

18

network communications).

Dahl et al. [22] use dynamic analysis for malware files classification by extracting API calls

features. Malware run in a lightweight VM and hundreds of thousands of features are extracted to

be used in a deep learning technique. Random projection is used to further reduce the dimension-

ality of the input space. This approach is for files classification which is not naturally suitable for

online malware detection.

Huang and Stokes [38] extend Dahl’s work by using multi-task learning (where a set of network

layers is shared between learning tasks) using Deep Neural Networks (DNN) for malware detection

and malware family classification of binary files. They focused on comparing and showing the

improvement of using deep learning techniques as opposed to shallow neural networks. Data are

extracted from dynamic analysis done by a light weight anti-malware engine. The collected data

used as features are divided into two: a sequence of API call events and their parameters and a

sequence of null-terminated objects extracted from system memory.

Athiwaratkun et al. [6] use a light weight emulator (usually used by anti-viruses) to capture

and log system calls done by an executable before actually running an executable on a Windows

operating system. Every logged system call is mapped to one of 114 defined high level system

calls, which, in turn, are enumerated and translated to integer sequences (from 0 to 113). Several

DL models including LSTM and GRU based language models which works on the sequences

of system calls. In addition, they proposed a character-level CNN model, where each character

represents an event.

Similarly, Kirat et al. [43] use system calls features in their work. They target evasive mal-

ware (which completely changes behavior based on the underlying environment). Their system

work by automatically extracting evasive signatures of a malware by using bioinformatics-inspired

algorithms (data mining) and leveraging data flow analysis techniques. System calls sequences

are collected by running the malware in different environments then system calls alignment takes

place. Then inverse document frequency (IDF is a measure of whether a term is common or rare

across all documents, usually used in information retrieval) is used to filter out common execution

19

events.

Agrawal et al. [4] uses API calls made by a portable executable (PE) file. Malware files are

executed in an isolated environment with no internet access and event sequences are logged as event

sequences. End-to-end learning models are used based on Long Short Term Memory (LSTM).

To handle extreme long sequences, Convoluted Partitioning of Long Sequences is used where the

entire input sequence is split into chunks and each is processed by CNNs in a recurrent way. LSTM

is used to capture the sequential data while CNN is used to extract significant event occurrences

within the entire large sequences.

2.3.2 Online Malware Detection

System calls features are used for online malware detection. Research based on system calls is

proposed in [23, 25, 53], while other research [5, 64] focuses on using API calls features.

The work by Tobiyama et al. [80] applies deep learning for malware detection using process

API calls log information. First, LSTM is used to extract features and then CNN is given these fea-

tures as input. The downside of this work is using a sandbox to monitor processes. In most cases,

malware will detect the presence of a sandbox and hide its true behavior. Also, this deals with

single data sample without considering that malware can be benign at certain times and malicious

at others.

Some research [61, 91] focuses on using memory features for online malware detection. Xu et

al. [91] propose a hardware assisted malware detection approach based on virtual memory access

patterns caused by the malware. Their assumption is that, in order for the malware to work, it

needs to modify/change control flow and/or data structures which, in turn, leaves finger prints in

memory. The features extracted are represented in histograms of memory accesses and are used as

an input to different ML techniques. This work focused on the detection of rootkits and memory

corruption malware. One model is trained for each application which can be quite expensive.

Performance metrics are used for malware detection. A valid assumption is that benign pro-

grams have multiple common patterns of resource utilization that keeps repeating. Another, as-

20

sumption is that malware that belongs to the same family, regardless of code variations in most

cases, will perform similar malicious tasks which will impact the system’s performance.

Demme et al. [24] examine the feasibility of using performance counters for malware detection.

Many precautions are taken to avoid mislabeling of the data collected. These includes: contam-

ination, where malware infect subsequent runs of the data collection experiments and network

connectivity, where malware stop showing malicious activities if there is no internet connection.

It’s actually hard to say when a malware truly shows it’s malicious activities, so labeling all data

after malware injection in an experiment as malicious is, in fact, inaccurate. There is no possible

feasible solution (except human experts) to correctly label all data samples, so data pollution is

present in most online malware detection experiments. The study use the performance counters as

input to ML techniques, including K-Nearest Neighbors (KNN) and Decision Trees.

2.4 Cloud Malware Detection

Few research has addressed the problem of cloud IaaS malware detection since many of the stand-

alone approaches works for cloud single VMs as well. Most, if not all, of the cloud-specific

malware detection techniques falls under the online malware detection category (which includes

anomaly detection approaches). Furthermore, they all focus on extracting features from the hyper-

visor since it adds another security layer.

Dawson et al. [23] focus on rootkits and intercept system calls through the hypervisor to be

used as features. Their system call analysis is based on a non linear phase-space algorithm to

detect anomalous system behavior. Evaluation is based on the dissimilarity among phase-space

graphs over time.

Wang [84] introduced Entropy based Anomaly Testing (EbAT) an online analysis system of

multiple system-level metrics (e.g. CPU utilization and memory utilization) for anomaly detec-

tion. The proposed system used a light-weight analysis approach and showed a good potential in

detection accuracy and monitoring scalability. However, the evaluation used didn’t show pragmatic

and realistic cloud scenarios.

21

Azmandian et al. [7] propose an anomaly detection approach where all features are extracted

directly from the hypervisor. Various performance metrics are collected per process (e.g., disk i/o,

network i/o) and unsupervised machine learning techniques like K-NN and Local Outlier Factor

(LOF) are used.

Classification of VMs is used for anomaly detection. Pannu et al. [62] propose an adaptive

anomaly detection system for cloud IaaS. They focus mainly on various faults within the cloud

infrastructure. Although this work is not directly addressing malware, such technique is valid

for malware detection since malware can cause faults in VMs, thus worth mentioning. It used a

realistic testbed experimentation comprising 362-node cloud in a university campus. The results

showed a good potential with over 87% of anomaly detection sensitivity. One of the drawbacks of

this work lies within using two-class SVM. It suffered from data imbalance problem which led to

several false classification of new anomalies.

The work by Watson et al. [87] is similar to [62] but directly addresses detecting malicious be-

havior in the cloud. It tried to overcome the drawbacks in [62] by using one class Support Vector

Machine (SVM) for detection of malware in cloud infrastructure. The approach gathers features

at the system and network levels. The system level features are gathered per process which in-

cludes (memory usage, memory usage peak, number of threads and number of handles). The

network level features are gathered using CAIDA’s CoralReef1 tool. The study shows high accu-

racy results. However, gathering features per process is a very exhausting and intrusive operation.

Having thousands of VMs with hundreds of processes running can have a significant performance

degradation. Furthermore, the study uses known-to-be highly active malware that easily skew the

system’s resource utilization (e.g., by forking many processes).

1CoralReef Suite: https://www.caida.org/tools/ measurement/coralreef/

22

CHAPTER 3: BLACK-BOX ONLINE MALWARE DETECTION IN

CLOUD IAAS

3.1 Introduction

Cloud systems are becoming more complex due to the large number of services, resources and

customers (tenants) involved. Cloud tenants’ resource usage ranges from few VMs to hundreds

or even thousands of VMs. For example Hadoop systems are sometimes deployed over thousands

of VMs. Hence monitoring VMs for security has become a critical task for not only the cloud

providers but also their tenants. Many security aspects need to be monitored within the cloud. For

example, if services do not work properly, it may affect the Service Level Agreement (SLA) ful-

fillment as well as the tenants’ security. Tenants can be malicious and affect other tenants’ systems

via co-resident attacks. Users accessing tenant hosted resources (e.g., web application hosted on a

VM) can be malicious. All of these scenarios need to be systematically monitored. In this chapter,

first, we provide a systematic way of presenting the monitoring points in the cloud. Then we focus

our scope to provide a way of monitoring cloud infrastructure as a service (IaaS) using clustering

of VMs based on resource usage and interaction. Most anomaly detection approaches are based on

a single/multiple VM(s) without leveraging the cloud properties as a whole system. As a matter of

fact, the behavior that is considered anomalous for one VM might not be anomalous for another

VM. In practice, a cloud system has many tenants and each tenant has many VMs. Typically, those

VMs are not randomly create, instead they are systematically created (e.g., scalability policy) with

each group of VMs doing a specific job. In this chapter, we consider the holistic view of the cloud

rather than single/multiple VMs. This chapter makes the following contributions:

• We systematically identify the monitoring points in cloud IaaS.

• We propose an approach for single-tenant’s VMs clustering to detect anomalous behavior

in scale-up and scale-down scenarios. First, we identify the most important VM features to

be used in clustering. Based on this, we use a modified sequential K-means (variation of

23

Figure 3.1: Cloud Monitoring Points

K-means [54]) clustering algorithm.

To the best of our knowledge, this is the first clustering approach to consider profiling VMs

with respect to each other in order to detect anomalous behavior.

The rest of the chapter is organized as follows. Section 3.2 gives an overview of cloud mon-

itoring and explains the different cloud monitoring points. Section 3.3 describes the clustering

techniques and its usage for the work in this chapter. Section 3.4 provides an overview of the

proposed framework and explains the methodology for implementing the framework. Section 3.5

explains the OpenStack-based testbed setup. Section 3.6 discusses the experiments we performed

on an OpenStack-based testbed and their results. Finally, Section 3.7 concludes our findings and

gives some directions for future work.

3.2 Cloud Monitoring Overview

Figure 3.1 illustrates the various monitoring points in cloud IaaS scenario. The figure represents

the interaction between different entities in a typical cloud environment. Wherever there is inter-

action, there is a security risk since one or both of the two ends on the interaction can be malicious.

Typically, cloud customers (tenants) interact with the cloud services in order to create new re-

sources or manage them, or interact with their resource directly for internal configurations (e.g.,

ssh into a VM). Cloud tenants host web applications which can be accessed by cloud application

24

Figure 3.2: Resource Layer Monitoring

users. These cloud applications are hosted on the cloud resources (VMs) and can interact with

other resources. Therefore, if a cloud application user successfully hacked or injected malicious

software into a cloud web application, the interaction between the application and the resources

could be malicious. The fact that many VMs are placed on the same physical host also has security

risks, for example co-resident attacks [67]. We categorize cloud security monitoring as follows.

1. Resource layer monitoring which is concerned about the monitoring of resources created

by the cloud services. For example, VM monitoring for malicious behavior or network

resources traffic monitoring.

2. Service layer monitoring which is concerned about the monitoring of cloud services such as

usage patterns by tenants.

Figure 3.2 shows a closer look at the resource layer monitoring. It shows, in a simple way,

the cloud resources and their interactions. In this chapter, we focus on monitoring VMs at the

resource-layer. The techniques developed are applicable to other resources in cloud such as virtual

routers and storage.

Figure 3.3 shows a closer look at the service layer monitoring. Although it is not the focus of

this chapter, it is essential to shed some light over it. Pattern recognition can be used to find anoma-

lous pattern within the usage of cloud service by tenants. The services communicate internally. For

25

Figure 3.3: Service Layer Monitoring

example, a tenant can create a VM by sending a command to the compute service. However, the

compute service needs to communicate with the network service to allocate IP. It also needs to

communicate with the image service to create the VM among many other communications. In

order to make sure the cloud services are working properly, a monitoring service can check if the

steps of a request are always the same. This is left to future work for additional investigation.

3.3 Clustering

Clustering is a technique to group similar data samples into clusters. One of the main assumptions,

which is essential in using clustering for anomaly detection, is that the number of normal data sam-

ples is far greater than the number of anomalies. We believe that this is true in the security domain

since having anomalies is not the usual case in any system. We refer to anomalies as any abnormal

behavior such as, for example, malicious behavior (due to system breach or malware) or system

failure. Clustering techniques are not as effective if anomalies create a cluster by themselves. False

anomalies remain a big challenge to clustering techniques. We discuss about reducing the number

of false anomalies in section 3.4.5.

26

3.3.1 K-means

K-means clustering algorithm is one of the most popular clustering algorithms due to its perfor-

mance and simplicity. It groups data samples based on their feature values into k clusters. Data

samples that belongs to the same cluster have similar feature values. Knowing the best k value re-

mains a challenge, although there are some proposed approaches [63]. Our framework is intended

to be practical; hence to be used by cloud customers (tenants) in real scenarios. We assume that

the tenants at the least know what type of VMs they are having. For example, a tenant is hosting

a web application on the cloud and is using a three-tier web architecture (web servers, application

servers, and database servers). Therefore, there are three clusters, so k = 3 is an input to the

monitoring system. Here are the steps of K-means clustering:

1. Set the number of clusters (k).

2. Initialize k centroids/means (by guessing their initial values or randomly choosing them).

3. For each data sample compute the distance to all centroids and assign it to the closest cen-

troid.

4. Modify the centroids based on the new data sample.

5. Go to step 3 until each of the centroid values do not change.

The Euclidean distance is used to compute the distance between a data sample and the cen-

troids. It is defined as:

dis(x, c) =

√√√√ n∑
i=1

(xi − yi)2

where x and c are vectors of quantitative features of the data sample and the centroid respectively.

27

3.3.2 Sequential K-means

Since our framework is meant to be as practical as possible, there are a few assumptions that need

to be addressed:

• The data is time series, meaning that we have one data sample at a time.

• A training phase is infeasible. Each cloud customer needs to have a training phase (each

scenario has completely different data) and this can be impractical.

Since we are dealing with time series data, sequential K-means is used. It is a variation of the

original K-means clustering algorithm. In sequential K-means, the data are infinite and comes

one sample at a time which is convenient for our case. Another difference between K-means

and Sequential K-means is that K-means iterate over the same data samples many times until the

centroid values doesn’t change anymore while Sequential K-means doesn’t. Listing 3.1 shows the

pseudo code of the sequential K-means algorithm.

make initial guesses f o r means (centroids) m1,m2, ...,mk

set the counters n1, n2, ..., nk to zero

u n t i l interrupted

get the next sample x

i f mi is closest to x

increment ni

replace mi with mi + (1/ni) ∗ (x−mi)

e n d _ i f

e n d _ u n t i l

Listing 3.1: Sequential K-means

3.4 Framework Overview

This section provides an overview of the proposed framework as well as a description of the

methodology to detect anomalies using modified sequential K-means. First, we define the fea-

28

Table 3.1: Black-box Virtual machines features/metrics

Metric Description Unit
CPU util Average CPU utilization %
Memory usage Volume of RAM used by the VM from the amount of its allo-

cated memory
MB

Memory resident Volume of RAM used by the VM on the physical machine MB
Disk read requests Rate of disk read requests rate/s
Disk write requests Rate of disk write requests rate/s
Disk read bytes Rate of disk read bytes rate/s
Disk write bytes Rate of disk write bytes rate/s
Network outgoing bytes Rate of network outgoing bytes rate/s
Network incoming bytes Rate of network incoming bytes rate/s

tures of the VMs. These features will be collected and used for clustering. Then, the features are

normalized since they are not of the same scale. Normalization is done based on the Min-Max

approach. Lastly, a real-time clustering (modified sequential K-means) is applied and anomalies

are detected based on the specified threshold.

3.4.1 Features Definition

VMs features are usually divided in two categories: inside and outside. For the sake of practicality,

we assume no prior knowledge of any information inside the VMs. Our framework deals with the

VMs as a blackbox. Table 3.1 shows the outside features selected to be collected for every moni-

tored virtual machine. (Note that the features used in this work are just a selection for illustration

purposes–in practice, a lot more features are available.)

3.4.2 Features Normalization

Clustering algorithms can be very sensitive to data scales (more weight goes to features with higher

values). Since data samples are not of the same scale, thus data normalization is needed. We used

a simple data normalization technique called Min-Max. Min-Max normalization is a technique

where you can fit the data with a pre-defined boundary. Min-Max normalization is simply defined

29

as:

A′ =
A−minV alueA
maxV alueA − A

Pre-defining the maxV alueA can be tricky for time series data. Thus, we employ a Min-Max

normalization based on a fixed-size sliding window.

3.4.3 Modified Sequential K-means

As stated in section 3.3, one challenge to using clustering is the number of false positives. However,

to reduce the rate of false positives, we add stabilizing time parameter. Stabilizing time is an

input parameter which represents the time to wait until each newly created VM is booted up and

configured. For example, if a new VM is created by the scaling policy, the cloud system may

need to tie it to a load-balancer, boot-up the operating system, install a web-server and do other

configurations. The framework shouldn’t monitor the web-server until it is completely up and

running as intended.

Each data sample that belongs to a VM will be clustered according to the clustering algorithm

used. Therefore, a data sample from a particular VM can belong to a cluster x at one time while

another data sample from the same VM can belong to cluster y at another time. The clustering

algorithm will not report this as an anomaly. For example, a data sample from a web-server VM

should not belong to a DB servers cluster. This should be reported as an anomaly. Since, we assume

no prior information about each VM function (because many VMs can be created automatically by

some policy, e.g., scaling) and cannot decide if a data sample really belongs to a particular cluster

or not, this presents a problem. We overcome this problem by slightly modifying the clustering

algorithm by adding a new parameter assigning time. This parameter represents the time needed

for the monitoring system to make sure that a VM belongs to a certain cluster. Once this is done, all

the data samples to come for a particular VM will be compared to its assigned cluster. For example,

let’s assume there are three clusters (web servers, application servers and database servers). VM

x is newly created. For the first m minutes, x’s data samples is compared and counted to all

30

the three clusters. The cluster with the maximum number of data samples is the cluster that is

assigned to VM x. After that, x’s data samples are compared only to its assigned cluster to check

for anomalies as well as updating the cluster’s information. Listing 3.2 shows pseudo code of the

modified sequential K-means.

make initial guesses f o r means (centroids) m1,m2, ...,mk

set the counters n1, n2, ..., nk to zero

counter j //Number of current VMs

set assigningT ime[1..j] to z minutes

def VMClusters[1..j] //VM i belongs to cluster[1..k]

set VMClusterCounts[1..j][1..k] to zero

u n t i l interrupted

get the next sample x

get VM v //x sample belongs to VM v

i f mi is closest to x

increment ni

replace mi with mi + (1/ni) ∗ (x−mi)

e n d _ i f

i f x is not assigned to any cluster

//If time end assign it to a cluster

i f assigningT ime[v] <= 0

set VMClusters[v] to index of max(VMClusterCounts[v])

e l s e

i f mi is closest to x

increment VMClusterCounts[v][i]

e n d _ i f

decrease assigningTime[v]

e n d _ i f

e n d _ i f

e n d _ u n t i l

31

Listing 3.2: Modified Sequential K-means

It is worth mentioning that one of the most critical aspects of cloud monitoring is the complex-

ity of the monitoring system in place. The modified sequential k-means still iterates once over any

data sample, which results in a linear complexity.

3.4.4 Anomaly Detection

A sample is considered an anomaly if it’s far from its centroid by a threshold. There are two

parameters that need to be set up by the cloud customer. Anomaly threshold (x%) and Anomaly

number (y/min). Anomalies are detected based on x. If a particular sample is off by x% from

its assigned centroid, then it is marked as an anomaly. Once, there are y anomalies per minute, an

alarm will be raised. This is done to reduce the number of false alarms due to behavior fluctuations.

3.4.5 Parameters tuning

The framework has some important parameters that need to be set up as accurate as possible since

they affect the clustering algorithm as well as the anomaly detection. These parameters are given

by the cloud customer because they differ based on each scenario.

Clustering parameters: stabilizing time(s). This parameter is very dependent on the scenario

because it is affected by the VM assigned resources, the operating system boot time and the inside

configurations. This parameter can be easily set by having the VM signal when the booting and

configuration are done.

Anomaly detection parameter: anomaly threshold(t). While increasing the threshold reduces

the number of false alarms, it also increases the chance of not detecting real anomalies. On the

other hand, while decreasing the threshold increases the number of false alarms, it also decreases

chance of anomalies getting through undetected. Thus, tuning these parameters are very important.

Normalization parameter: window size(w). This parameter represents the window size in which

the sliding-window Min-Max normalization should keep in record. On one hand, keeping many

32

Controller node

Network service(Neutron)

Image service(Glance)

Data collecting service(Ceilometer)

Orchestration service(Heat)

Load-balancer service(Octavia)

Compute node
Network agent

Compute(nova)/Hypervisor(KVM)
Polling/Collecting agent

Identity service(Keystone)

Compute(nova)/Hypervisor(KVM)

Compute node
Network agent

Compute(nova)/Hypervisor(KVM)
Polling/Collecting agent

Compute node
Network agent

Compute(nova)/Hypervisor(KVM)
Polling/Collecting agent

Compute node
Network agent

Compute(nova)/Hypervisor(KVM)
Polling/Collecting agentBlock data storage(Ceph)

Figure 3.4: Testbed Setup

history samples might affect the new data samples that started shifting towards different values. On

the other hand, keeping few history samples will distort the data samples during the normalization

stage.

Automatic parameter tuning is a real challenge that we plan to investigate further in the future

work.

3.5 Experiments Setup

3.5.1 Testbed Environment

The cloud testbed used in this work is OpenStack 1 which is a major cloud orchestration software

used by many cloud providers. Figure 3.4 shows the setup of the cloud testbed. The testbed

composed of five nodes. One controller node is responsible for services such as the dashboard,

storage, network, identity, and compute. Four compute nodes are responsible just for the compute

service. The compute nodes also contains network agents as well as samples collecting agents.

1Openstack website. https://www.openstack.org/

33

LoadBalancer(Octavia)

Application server
(Wordpress)

Application server
(Wordpress)

DB server
(MySQL)

Client Client

Web server
(Apache)

Web server
(Apache)

LoadBalancer(Octavia)

….

….

….

Figure 3.5: 3-tier web application

3.5.2 Use Case Application

In order to simulate a real environment as much as possible, a three-tier web application, a common

cloud architecture according to AWS2, is built as a use case. A three-tier web application is an

application program that is organized into three major parts, where each tier can be hosted on one

or more different places. In our case, these places are the cloud nodes hosting the compute services.

Figure 3.5 shows the three-tier web application built on top of our testbed. The application

used for this work is Wordpress3, a major open-source content management system (CMS) based

on PHP and MySQL. In a typical three-tier web application, a web server hosts the static pages, an

application server hosts the application logic, and a database server store the data. The work flow

typically is:

1. Web server receives a request from a client.

2. Web server replies back if it is a static page request that doesn’t need computation in the

application logic.

2Amazon architecture references. https://aws.amazon.com/architecture/
3Wordpress website. https://wordpress.org/

34

3. If not 2, it sends the request to an application server.

4. Application server receives the request.

5. Application server accesses the database server if it needs stored data and replies back to the

web server.

6. Web server replies back to the client.

Separating the application into three tiers allows for the concurrent development and config-

uration of the three different tiers. It also allows for the scaling of the three-tiers separately. In

our case, scaling up and down is enabled for the web and application servers but not the database

server. The 3-tier web application used for this work utilizes two load balancers. A web server

load balancer which is responsible for distributing the requests on all the web servers and an appli-

cation server load balancer which is responsible for distributing the requests on all the application

servers.

3.5.3 Traffic Generation

Most literature uses the Poisson process for generating traffic because of its simplicity. It is still

applicable in many cases, however it was proven to be inaccurate for Internet traffic. Internet traffic

was proven to be of self-similar nature [20, 49, 82, 89]. All the experiments are conducted twice

based on two traffic generation models: Poisson process and ON/OFF Pareto. A multi-process

program is built, acting as the concurrent users, to send requests to the web-servers’ load-balancer.

The simulation parameters are as follows:

• Generator: On/Off Pareto, Poisson

• Number of concurrent clients: 50

• Requests arrival rate/hour: 3600

• Type of requests: GET and POST(randomly generated)

35

The On/Off Pareto input parameters are set according to the NS24 tool defaults. The amount of

traffic is chosen to stress the VMs to trigger the scalability policy. The scale up policy is set to

scale up whenever the CPU utilization average of a specific tier (app-server tier or web-server tier)

is above 70% and scale down when the CPU load average is below 30%.

3.6 Results and Discussion

Anomaly injection is randomized along two dimensions - time of injection, and magnitude of the

anomaly. We explore the effectiveness of our framework based on three use cases. In each use

case, Poisson process and On/Off Pareto traffic generation models are used. All the experiments’

duration is one hour.

Evaluation methodology. We use four metrics to evaluate the effectiveness and applicability

of our approach [55].

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

Fscore = 2× Precision×Recall
Precision+Recall

When the system detects an anomaly, it is considered a positive outcome. When the system

doesn’t detect an anomaly, the outcome is negative. Therefore:

1. TP : anomaly occurred and was successfully reported.

2. FP : anomaly didn’t occur and was reported.

3. TN : anomaly didn’t occur and was not reported.

4NS2 tool manual. http://www.isi.edu/nsnam/ns/doc/node509.html

36

Figure 3.6: Injected anomalies detection with tuned classifier

4. FN : anomaly occurred and was not reported.

Precision refers to the number of data samples, detected as anomalies, that are actually true

anomalous samples. On the other hand, recall refers to the percentage of correctly detected anoma-

lies based on the total number of anomalies of the data samples.

3.6.1 Injected Anomalies

The effectiveness of the framework is being tested by injecting anomalies in randomly chosen

VMs. Injected anomalies are cpu, memory and disk intensive.

Figure 3.6 shows the detection results of the experiment. The results show that the detector

performs similarly well on both traffic models with accuracies over 90% but the precision suffers

an amount of FPs due to the nature of the fluctuated traffic load and resource usage.

3.6.2 EDoS

Not all threats intensively use resources. As a matter of fact, the EDoS [75] attack tries to avoid the

intensive resource usage by keeping low profile. One form of EDoS is to create some VMs while

remaining dormant and idle (can be done by stealing the credentials of one of the cloud tenants

who has authority to create VMs). Such attacks tries to waste resources in way that is not obvious

to the tenants. EDoS was simulated by randomly injecting VMs, with the only outcome during the

37

Figure 3.7: EDoS detection with tunned classifier

life-time of each injected anomalous VM being TPs or FNs. The injected VMs remain dormant

and keep low resource usage profile.

Figure 3.7 shows the detection evaluation performance for this experiment. It is clear that the

detector is effective against this kind of EDoS attack since the injected VMs have very different

profiles than the 3-tiers. The results show a loss of precision due to detected FPs. After inves-

tigation, it was due to spawning high load of VMs (by injecting and scaling). The cloud was

unresponsive which prevented any traffic load from reaching the VMs resulting in sudden drop in

resource usage. As such, this is not caused by poor detection. In fact, this helps security adminis-

trators detecting times where their system is down.

3.6.3 Ransomware

Ransomware has become very popular since 2016. Netskope5 quarterly cloud report states that

43.7% of the cloud malware types detected in cloud apps are common ransomware delivery vehi-

cles. Ransomware basically encrypt various files on victim’s hard drives before asking for a ransom

to get the files decrypted. KillDisk linux-variant ransomware is used for experiments. The samples

were obtained from VirusTotal6. The 1 hour experiment is divided in two phases: normal phase

(first 20 minutes) and malicious phase (last 40 minutes). The malicious phase is the time after the

5Netskope website. https://www.netskope.com
6VirusTotal website. https://www.virustotal.com

38

Figure 3.8: KillDisk ransomware detection
- Poisson

Figure 3.9: KillDisk ransomware detection
- On/Off Pareto

ransomware is injected, with the only valid outcome being TPs or FNs. The ransomware is injected

into a random application server due to the fact that applications are more likely vulnerable than

the widely used web servers (eg. Apache or Nginx).

The results of this experiment are shown in Figure 3.8 and Figure 3.9 where the bars are pro-

duced by calculating the performance metrics for each set of modified sequential k-means specific

parameters. The most two critical parameters are chosen for optimal (w = 50, t = 0.33) and near

optimal results. In the case of Poisson traffic, the detector suffers FPs. On the other hand, in the

case of On/Off Pareto traffic, it is clear from the results that the detector is effective with detection

performance of overall more than 90%.

3.7 Conclusion

In this chapter, we investigated clustering-based cloud monitoring for detecting anomalies in scale-

up and down scenarios in IaaS cloud. In order to have a better security in the cloud, all of the

cloud monitoring points have to be covered. We proposed a framework to cover a subset of the

cloud monitoring points. The framework uses clustering for IaaS monitoring in the cloud. It uses

a modified version of the Sequential K-means algorithm to overcome the problem of high false

alarm rate when using clustering. The results showed how the framework can detect anomalies in

three scenarios. The experiments show that parameter tuning is a very important issue and is very

39

dependent on the use case.

The reason we focused on one category of malware (ransomware) is the growing concern of

activity of ransomeware as well as its noticeable behavior and thus it is applicable for detection by

our framework. One limitation of our framework is that it is vulnerable to low-profile anomalies

and malware. Detecting those types of anomalies has proven to be hard using only resource usage

metrics. Another limitation is that an expert is necessary for parameter tuning which, in some

cases, is unavailable/unaffordable for some cloud tenants.

In the future, we plan to investigate various issues. First, dynamic parameter tuning, which is

essential for getting more accurate results. Second, we plan to experiment on different architectures

other than the 3-tier web architecture. Lastly, we plan to use and compare different machine

learning algorithms for anomaly detection.

40

CHAPTER 4: MALWARE DETECTION IN CLOUD

INFRASTRUCTURES USING CNN

4.1 Introduction

In Chapter 3, we showed that malware detection can be effectively performed by inspecting the

performance and resource utilization metrics of VMs as a black-box. Although the approach works

well with highly active malware (e.g. ransomware), it is not as effective for detecting malware that

maintains a low-profile of resource utilization. In this chapter, we develop a novel and effective

technique to detect such low-profile malware that utilizes minimal system resources, by inspecting

raw, fine-grained meta-data of each process in a VM.

As stated in Chapter 2, two major approaches have been explored for malware detection in the

current literature: static analysis, where malware code is analyzed without running it, and dynamic

analysis, where a malware is executed and its behavior observed in order to detect it. The pros and

cons of these approaches for malware detection are well understood.

In this chapter, we introduce and discuss a malware detection approach using Deep Learning

(DL). We demonstrate the applicability of using a 2d CNN for malware detection through the

utilization of raw, process behavior (performance metrics) data. Our approach falls under dynamic

analysis. However, unlike most prior works that utilize machine learning (ML) in dynamic analysis

to classify malware files, we use it for online malware detection. Note that the approach introduced

in this chapter is general and is not confined to the use of CNN. The choice of using CNN is due

to its simplicity and training speed as opposed to other DL architectures such as Recurrent Neural

Networks (RNNs). Applying and comparing different ML approaches is left to future work.

One of the biggest challenges in employing ML for malware detection is the mislabeling prob-

lem. This is because, during the training phase, there is no guarantee that a malware exhibited

malicious behavior. While some malware start performing malicious activities immediately after

infecting a machine, a reasonably sophisticated malware starts off as a process and idles until some

41

condition is met (e.g., a command from its remote owner), which can occur at any time. In par-

ticular, such a condition may never occur during the training phase for the malware to activate.

However, this issue is rarely addressed in existing literature except for the work in [24], which

recognizes this issue. The authors stated that this problem can pollute the training and testing data;

however, since there is no way around it, they had to make the assumption that it is all right to label

all the data as malicious after a malware execution takes place. In other words, the assumption is

that malware will always show malicious activity at all times.

We follow their assumption in this work but not to the fullest. Consider a more common

scenario when a malware periodically (e.g., every 1 minute) performs malicious activities such

as stealing and sending some information to its Command and Control servers (C&Cs). Now the

malware is surely conducting a malicious behavior but only periodically. As a result, if a malware

is run for 15 minutes and we collect a data sample every 10 seconds (total of 90 samples), all the

collected data samples will be labeled as malicious whereas in fact only 15 of them are malicious.

This will cause a mislabeling problem during the training phase.

To mitigate this problem, we refine the above assumption by assuming that a malware will

show malicious activity within a time window. The underlying rationale is that while there is

no way to know for sure that a malware ever exhibited malicious behavior during the training

phase, it is more practical to consider a sliding window of time during which malicious behavior

is exhibited instead of assuming that all data samples collected after malware injection indicate

malicious activity. This increases the probability of correctly labeling our samples. Toward this

end, we develop a 3d CNN classifier which takes a 3d input matrix containing multiple samples

over a time window. In summary, the contributions of this chapter are two-fold:

• We develop an effective approach for detecting malware by learning behavior from fine-

grained and raw process meta-data that are available directly from the hypervisor. The ap-

proach we develop is resistant to the aforementioned mislabeling problem.

• We demonstrate the effectiveness of this approach by first developing a standard 2d CNN

model that does not incorporate the time window, and then comparing it with a newly de-

42

veloped 3d CNN model that significantly improves detection accuracy mainly due to the

employment of a time window as the third dimension, thereby mitigating the mislabeling

problem.

To the best of our knowledge, our work is the first to apply 2d and 3d CNN on raw performance

metrics of processes, which can be easily obtained through the hypervisor layer. This is critical if

a cloud service provider were to offer such a malware detection service. Since the approach we

propose does not require an agent to run within VMs, we avoid any major privacy and security

concern for cloud tenants.

The remainder of the chapter is organized as follows. Section 4.2 outlines the methodology

including the architecture of the CNN models used. Section 4.3 describes the experiments setup

and results. Section 4.4 gives a discussion about some of the important limitations and possible

mitigations. Section 4.5 summarizes and concludes this chapter.

4.2 Methodology

This section provides an overview of the methodology used for malware detection in VMs using

CNN.

4.2.1 Convolutional Neural Network

CNN is a type of DL that has been applied to images analysis and classification. One advantage of

CNN is that it requires little pre-processing as compared to similar image classification algorithms

since it works on raw data. It acts as a feature extractor which is very convenient since feature

selection in most cases requires human experts.

Figure 4.1 shows the architectural overview of a CNN. Much like deep neural networks, CNN

consists of input and output layers and multiple hidden layers. A Convolutional layer applies a

convolution operation on the input matrix and passes the output to the next layer. A convolution

operates on two inputs: feature map (input matrix) and convolution kernel (works as a filter) and

outputs another image. The kernel is used to filter out certain information from the feature map

43

Input
Matrix

Convolution Pooling Convolution Pooling Fully connected

Normal
Malicious

Prediction

Feature
Map

Feature extraction Classification

Figure 4.1: CNN overview

and discard other information. In other words, a convolution operation uses multiple kernels where

each kernel is responsible to extract and focus on a piece of information (e.g., one kernel might

filter edge information). Usually, a convolutional layer is followed by a Pooling layer which takes

the output of the convolutional layer as input. Pooling is an operation in which it down samples

the feature maps received from the convolutional layer. It works by taking a certain area of the

input and reduces it to a single value. For example, max pooling uses the maximum value from

certain area, while average pooling uses the average value. Convolutional and pooling layers are

followed by fully connected layers, which connect every neuron in one layer to every neuron in the

next layer.

4.2.2 Process Performance Metrics

In this work, we use performance metrics as a way of defining a process behavior. Table 4.1 shows

metrics that are selected to be collected for the VMs. Selected metrics are for the purpose of

showing the effectiveness of our approach; in practice, many more metrics are available. For the

sake of practicality, we assume no prior knowledge of any additional information other than the

metrics we collect in Table 4.1.

4.2.3 CNN Input

We represent each sample as an image (2d matrix) which will be the input to the CNN. Consider

a sample Xt at a particular time t, that records n features (performance metrics) per process for m

44

Table 4.1: Virtual machines process-level performance metrics

Metric Category Description
Status Process status
CPU information CPU usage percent, CPU times in user space, CPU times in system/kernel

space, CPU times of children processes in user space, CPU times of children
processes in system space.

Context switches Number of context switches voluntary, Number of context switches involuntary
IO counters Number of read requests, Number of write requests, Number of read bytes,

Number of written bytes, Number of read chars, Number of written chars
Memory information Amount of memory swapped out to disk, Proportional set size (PSS), Resident

set size (RSS), Unique set size (USS), Virtual memory size (VMS), Number
of dirty pages, Amount of physical memory, text resident set (TRS), Memory
used by shared libraries, memory that with other processes

Threads Number of used threads
File descriptors Number of opened file descriptors
Network information Number of received bytes, Number of sent bytes

processes in a VM, such that:

Xt =



f1 f2 . . . fn

p1
...

... . . .
...

...
...

...

pm
...

... . . .
...


Note that a CNN requires the same process to remain in the same row in each sample. For

example, a process with PID 1 that resides in the first row of the matrix must remain in the first

row across all upcoming samples. The CNN in computer vision takes fixed-size images as inputs,

so the number of features (n) and processes (m) must be predetermined. The number of features

is easily determined since we have a fixed number of collected features represented in Table 4.1

(28 in our case). On the other hand, determining the number of processes is not as easy since the

processes are dynamic in nature. In highly active systems (e.g., web or app server), many processes

get created and killed to handle client requests based on the workload.

A process is defined by a process identification number (PID) which is assigned by the OS. In

a Linux based OS (used in our experiments), PID numbers will increase to a maximum system-

45

dependent limit and then wrap around (recycle). The kernel will not reuse a PID before this wrap-

around occurs.1 The limit (maximum number of PIDs) is defined in /proc/sys/kernel/

pid_max which is usually 32k. This number presents a problem because a matrix of 32k×28 is a

huge input matrix. Also having too many variables in the input requires a large number of input in

any neural network. Limiting the max number of processes to a lower value and depending on the

concept of wrap-around will not solve the problem because of many reasons. First, the reason the

max number of processes is set to a very large number (i.e. 32k) is that it can confuse the kernel

if the value is too small and wraps around too often, not to mention that it is hard to determine the

appropriate number before hand. Second, there is no guarantee that, for instance, a process with

a PID 1000 at time t1 is going to be the same process at time t100. Considering the wrap-around

concept, this process might have been killed and a new different process could be assigned the

same PID later on. This can cause inaccurate results by the CNN since an important requirement

is that the same processes remain in the same rows at all times.

To solve these problems, instead of defining a process by it’s PID, we define a process, referred

to as unique process, by a 3-tuple: process name, command line used to run process, and the

hash of the process binary file (if applicable). In cases where the same application (e.g., apache

web server) forks multiple child processes (with the same name, cmd, and originated binary), we

aggregate these processes by taking the average of their performance metrics. This also helps in

smoothing the fluctuations of processes that have similar functions. In all of our experiments none

of the VMs had more than 100 unique processes; however, for practicality, we set the maximum

number of unique processes to 120 to accommodate for newly created unique processes. Any

unavailable unique process (due to termination) at a particular time is padded with zero-values. In

the rest of the chapter, the term process and unique process are used interchangeably, where both

refer to unique process.

The 3d CNN model input includes multiple samples over a time window. The input matrix is

1Linux Manual. http://man7.org/linux/man-pages/man5/proc.5.html

46

/proc/sys/kernel/pid_max
/proc/sys/kernel/pid_max

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

f1, . . . , fn

p1, . . . , pm

Xti , . . . , Xtj

Xtij =

where Xtij is the 3d input matrix containing samples from time ti to tj . As stated in section 4.1, we

use a 3d CNN model to enhance the results by capturing patterns over a small time window which

in turn helps in mitigating the mislabeling problem.

4.3 Experiment Setup and Results

In this section, first, we present the CNN model used in this work as well as the data preprocess-

ing step. Second, we review our experimental setup. Then, we provide the results to illustrate

that a 2d CNN can be effective in detecting low-profile malware using per-process performance

metrics. Lastly, we show how using a 3d CNN can improve the results by attempting to solve the

mislabeling problem.

4.3.1 Preprocessing

It is essential to CNN to have scaled data input for faster convergence and better accuracy results.

A standard approach is to rescale the data to have a mean of 0 and standard deviation of 1. It is

done in a per feature fashion. Given a set of features F = {f1, fi, ..., fn} and a set of samples

X = {x1, xj, ..., xt}, it is defined as x(fi)jstandardized
= (x

(fi)
j − µ(fi))/σ(fi), where x(fi)j is a vector

of values corresponding to feature fi in the jth input sample, and µ(fi), σ(fi) are respectively the

mean and the standard deviation of values corresponding to feature fi across all samples in set X .

The same two sets of µ(fi) and σ(fi) (obtained from the training dataset) are used for standardizing

the validation and testing datasets.

47

Input layer

Convolution Layer 1 + ReLU activation

Max Pooling Layer 1

Convolution Layer 2 + ReLU activation

Max Pooling Layer 2

Fully Connected Layer 1 + ReLU activation

Dropout Layer

Fully Connected Layer 2

Standardized Input Matrix

Output Prediction

Figure 4.2: Proposed CNN Model

4.3.2 CNN Model Architecture

Figure 4.2 shows the CNN model used in this work. It consists of 8 layers. First, the input layer

which is basically received as the input matrix. Second, a convolutional layer which receives a

d × 120 × 28 standardized matrix, representing samples in a particular time window, where d is

the depth of the input matrix and 120× 28 is the length of the 2d matrices representing the number

processes and features, respectively. Then, it performs a convolutional operation with 32 kernels

of size d × 5 × 5 with zero-padded ending. The results of this layer are 32 feature maps of size

d × 120 × 28. Third, a max pooling layer of size 2 × 2 × 2 which down size each dimension by

a magnitude of 2, resulting in a 32 feature maps of size d/2 × 60 × 14. The fourth and fifth layer

are replicates of layer two and three so the output of the max pool layer 2 is 64 feature maps of

size d/4× 30× 7. The last 3 layers are a fully connected layer with size of 1024, a dropout layer

described below, and, last, another fully connected layer with size of 2 denoting the classification

48

probability of a malicious or benign VM sample. Note that the model doesn’t classify malicious

or benign processes but rather the VM as a whole which means there is no way to know which

process is malicious.

To reduce over fitting, we use a dropout [35] layer after the first fully connected layer, since it

is shown in previous work [83] that dropout regularization works well with fully connected layers.

Rectified linear unit (ReLU), a simple and fast activation function, is simply defined as f(x) =

max(0, x). It turned out that ReLU (which is used in our work) works better in practice than the

other activation functions as well as it’s several times faster in training as stated in [46].

The model is trained using back-propagation for Adam Optimizer [42], a stochastic gradient

descent that automatically adapt the learning rate. The optimizer works on minimizing the loss

function. We use the mean cross entropy as a loss function. The model is also trained using

mini-batches which is not reflected in the layers described above.

The described CNN model is used for both 2d CNN and 3d CNN except the former has one

less dimension (i.e. the depth d of the input matrix is 1). The CNN structure used in this work

is considered to be shallow as opposed to models such as GoogleNet and LeNet due to the limit

of the experiments we could perform in our lab which, in turn, led to lack of large data sets.

Experimenting in a larger scale and comparing different CNN models is left to future work.

4.3.3 Parameters Tuning

Parameters tuning is a very challenging problem in ML in general. It helps choosing the set of

parameters that yields the best classification accuracy. A common approach, used for most of the

parameters in our work, is grid search, where we define (based on our knowledge) bounds for

each parameter and try all the combinations that yields the best classification accuracy during the

validation phase. Other approaches can be more practical such as random search [10]. In our case,

the set of important parameters are as follows. Dropout. Dropout is a regularization technique

that turns neurons on/off in each layer to force them to go through different path. This operation

improves generalization of the network and prevents over-fitting. We set this parameter to 0.5 [8].

49

Web server
(Apache)

Client

App server
(Wordpress)

DB server
(MySQL)

Client

.

.

Figure 4.3: 3-tier web architecture

Learning rate. This determines how fast we move toward the optimal weights in our network.

If this parameter is very large, it will skip optimal values. On the other hand, if it is too small, it

will take too much time to converge to the optimal values, and it may get stuck in local minima.

Typically, a stochastic gradient descend uses decay learning rate to slow down the learning rate

as it moves forward. AdamOptimizer (used in our study), adapts the learning rate automatically,

however the adaptation maximum ceiling is defined by our learning rate parameter. If we set it

very large, it will give the optimizer more room to adapt which can be problematic in some cases.

The values we found reasonable during our experiments lies between 1e − 3 and 1e − 5. Mini-

batch size. As CNN is using mini-batches to learn, we define the bounds of our mini-batches sizes

between 10 and 30. Going lower or higher proved to decrease the accuracy.

4.3.4 Experimental Setup

Our experiments were conducted on Openstack2 (a major open-source cloud orchestration soft-

ware). To simulate a real world scenario, we used a 3-tier web architecture (one of the most

common cloud architectures according to Amazon3). Note that our work is not confined to the

3-tier web architecture use case used in the experiments since our approach relies on learning the

behavior of processes in VMs. This means that learning approach of processes behavior would

remain the same regardless the architecture in place. Figure 4.3 shows the setup used to conduct

our experiments on Openstack. A 3-tier web architecture, typically, consists of 3 separate tiers:

web, application and database server. In our case, we used Apache as a web server, Wordpress4

2Openstack website. https://www.openstack.org/
3Amazon architecture references. https://aws.amazon.com/architecture/
4Wordpress website. https://wordpress.org/

50

0 15 30

Time
(min)

Clean phase Malware injection Point.
25 Malware executables are
injected (one per experiment).

Period of potential
malware activity prone
to mislabeling problem

Collect 28 different process performance metrics
(Table I) every 10 seconds for ≃ 100 processes

Figure 4.4: Data collection overview

(a major open-source content management system) that utilizes PHP as an application server and

MySQL as a database server.

According to [49], Internet traffic is of self-similar nature. Thus, we built a multi-process

traffic generator (set to the NS25 default parameters values), based on ON/OFF Pareto distribution,

to generate traffic for our experiments.

Figure 4.4 shows an overview of the data collection process. Each of our experiments was 30

minutes long. The aforementioned 3-tier architecture was created from known-to-be clean images.

The first 15 minutes is the normal phase, where no malicious activity takes place, and is followed by

15 minutes of malicious phase, where a single malware is injected and executed in the application

server. Few normal processes were injected during the normal phase to check the effectiveness of

our approach in handling false positives. The malware was injected in the application server VM

because most vulnerabilities, typically, lies in the application side.

The image used for spawning VMs is Ubuntu 16.04 which was modified to include a data

collection agent. Data was collected at 10-second intervals in a JSON object. We refer to each

of the collected objects at a particular time as a sample. For simplicity, we included an agent

inside VMs to collect data; however, data collection could also be done through Virtual Machine

Introspection (VMI) since similar metrics [7, 87] could be collected from the hypervisor.

The 25 malware binaries6 used were randomly obtained from VirusTotal7. They mainly belong

to 3 classes: Rootkits, Trojans and Backdoors and have unique SHA-256 hashes.

5NS2 tool manual. http://www.isi.edu/nsnam/ns/doc/node509.html
6https://github.com/mahmoudaslan/researchrepo/blob/master/malwarehashes
7VirusTotal website. https://www.virustotal.com

51

Most malware check for connection to their C&Cs, otherwise, they remain idle. Many re-

searches (on malware dynamic analysis) use sandboxes or VMs in a controlled environment which

can cause hindrance to the malware. To accommodate for this problem, all of our VMs are con-

nected to the Internet outside of firewalls to prevent any intervention. To avoid data pollution,

experiments were totally independent and all VMs used for one run were completely destroyed

before the next run because malware can infect other VMs and possibly pollute subsequent runs.

We collected samples at 10 seconds intervals for 30 minutes duration, so we have a total of '

180 samples per experiment and ' 4500 samples in total.

4.3.5 Evaluation

We use four metrics [55] to evaluate our CNN classifiers:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

Fscore = 2× Precision×Recall
Precision+Recall

Precision is the number of correct malware predictions. Recall is the number of correct malware

predictions over the number of true malicious samples. Accuracy is the measure of correct classifi-

cation. F score is the harmonic mean of precision and recall. True Positive (TP) refers to malicious

activity that occurred and was correctly predicted. False Positive (FP) refers to malicious activity

that did not occur but was wrongly predicted. True Negative (TN) refers to malicious activity that

did not occur and was correctly predicted. False Negative (FN) refers to malicious activity that

occurred but was wrongly predicted.

52

0 5 10 15 20 25 30

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A
cc
u
ra
cy

0.8580.859

0.849

mini-batch size 10
mini-batch size 20
mini-batch size 30

(a) Accuracy of 2d CNN. mini-batch sizes of 10, 20
and 30

0 5 10 15 20 25 30

Epoch

0

5

10

15

20

25

30

35

40

M
e
a
n
 c
ro
ss
 e
n
tr
o
p
y
 l
o
ss

training loss
validation loss

(b) Mean cross entropy loss of 2d CNN. mini-batch
size = 10

0 5 10 15 20 25 30

Epoch

0

5

10

15

20

25

M
e
a
n
 c
ro
ss
 e
n
tr
o
p
y
 l
o
ss

training loss
validation loss

(c) Mean cross entropy loss of 2d CNN. mini-batch
size = 20

0 5 10 15 20 25 30

Epoch

0

5

10

15

20

25

30

35

40

45

M
e
a
n
 c
ro
ss
 e
n
tr
o
p
y
 l
o
ss

training loss
validation loss

(d) Mean cross entropy loss of 2d CNN. mini-batch
size = 30

Figure 4.5: 2d CNN trained with different mini-batch sizes. Optimized with learning rate of 1e-5
for AdamOptimizer

4.3.6 2d CNN Results

The data collected are divided into 3 sets: training, validation and testing sets with the percentages

of 60%, 20%, and 20% respectively. The split is done on the number of experiments. For example,

the 25 experiments (each using a different malware) is split to 15, 5 and 5 respectively. This means

that the validation and testing phases are exposed to unknown malware. Training data is used to

train the CNN models. Then, the validation set is used as a way to tune the parameters of the CNN.

Once we get the highest validation accuracy for a model with specific set of parameters, we use

53

Figure 4.6: 2d CNN classifiers results

the testing set to test the chosen model (optimized classifier). The classifiers were trained for 30

epochs as it turned out, in our case, that there was no extra gain of accuracy or decrease in mean

cross entropy loss afterwards.

We only show results for classifiers using learning rate of 1e − 5 because they showed the

highest accuracy and lowest mean cross entropy loss. Figure 4.5 shows three trained classifiers

based on different mini-batch sizes of 10, 20, and 30. Figures 5.3a shows the accuracy the three 2d

classifiers, and similarly, Figures 5.3b, 5.3c and 5.3d show the mean cross entropy for mini-batch

size of 10, 20 and 30, respectively.

In general, the results show that using mini-batch size of 20 yields the highest accuracy of

85.9% during validation.

Figure 4.6 shows the results of the 4 evaluation metrics. The CNN classifier with mini-batch

of 20 shows the highest results when it is evaluated on the testing data set, while the classifier

with mini-batch size of 30 shows the lowest (larger mini-batch sizes can lose generalization [41]);

however, there is a drop in the overall performance of the classifiers on the testing data set where

the highest accuracy is ' 79%.

54

Figure 4.7: Optimized 2d and 3d CNN classifiers results. 3d CNN classifiers are best optimized
with learning rate of 1e-4 as well as with 20 and 30 mini-batch sizes, respectively.

4.3.7 3d CNN Results

The 3d CNN classifiers take time-windowed input. Samples inside this time window represent the

depth of the input matrix. In fact, the 2d CNN is a special case of the 3d CNN where the depth

is 1. Our experiments is done on 2 time-windows: 20 and 30 seconds. Since data is collected in

10 seconds intervals, a 10 seconds time window means 1 data sample and, similarly, 20 and 30

seconds time windows means 2 and 3 data samples, respectively.

Figure 4.7 shows a comparison of the performance metrics of the 2d and the newly tested 3d

classifiers. These results are based on the testing data set. We refer to the classifiers as shown

in Figure 4.7: 2d CNN, 3d CNN 1 (20 seconds time window) and 3d CNN 2 (30 seconds time

window). The results showed significant improvement of using 3d CNN 1 and 3d CNN 2. The

accuracy of 3d CNN 1 and 3d CNN 2 classifiers jumped to ' 86% and ' 90%, respectively, as

opposed to the 2d CNN classifier accuracy of ' 79%.

55

4.4 Discussion

In this section, we discuss some relevant issues in our approach and some possible improvements

for future work.

Accuracy drop between validation and test. The 2d CNN classifiers showed a drop of accu-

racy from' 86% (validation dataset) to' 79% (testing dataset). Similarly, a drop of accuracy also

happened during 3d CNN classifiers evaluation (from' 97% to' 90% and' 89% to' 86%). Al-

though it might seem normal considering the validation set is biased since it is used for parameters

tuning, one reason is that the malware included in the testing data set (after manual examination) is

shown to have more different behavior than ones included in the training and validation set. Note

also that malware which apparently has the same purpose can have different behavior which can

confuse classifiers that uses malware classes information. For example, one Trojan we analyzed

opens a back-door and remains idle, while another opens a back-door, steals and sends system

information over the Internet. In our experiments, we randomly selected our malware from few

classes (trojans, rootkits, etc..) to completely unbias our experiments.

Mislabeling problem. Using 3d CNN, we improved the mislabeling problem stated in Section

4.1. Figure 4.8 shows a behavior of a malware for just 1 metric. The spike in the figure shows

the time when the malware first booted up. Then, the malware keeps idle for specific time not

performing any malicious activity. Labeling all samples corresponding to the benign area shown

in the figure will pollute the data because the classifier learns that these actions are malicious while

in fact they are not. On the other hand, when the malware steals and sends data over the Internet,

samples should be labeled as malicious. Differentiating between those two actions is not possible

unless it is seen by human experts. In most cases, researches take the risk of this kind of pollution

because there is no way around it. A partial solution is to take both the shown areas as one sample

and state that during this time window a malicious activity has happened. This is essentially what

our 3d CNN classifiers are trying to do by decreasing the number of mislabeled samples as well as

capturing patterns over a small time window. In theory, the larger the window the better; however,

a very large time window would need a large amount of data , as well as it would act as a window

56

Figure 4.8: Malware behavior of the network sent kBs metric.

of opportunity for the malware to maliciously act before detection and possible mitigation.

3d CNN’s need for data. We experimented on two time windows (20 and 30 seconds) due to

the limited amount of data. Increasing the time window (meaning increasing the depth of the input

matrix), needs to stack multiple data samples together. Trying to experiment with 40 seconds time

window and above caused dramatic decrease in accuracy because the CNNs did not have enough

data to converge and learn properly. Using 3d CNN showed significant improvement with a very

short time window, so having large enough data can further improve the results.

Processes and metrics ordering. One advantage of CNN is that it takes into account the

spatial structure of the data; however, in our case, it seems that the input lacks spatial structure

across columns and rows of the matrix. For example, if we substituted feature f1 column with

feature f2 column, it is still going to represent the input. On the other hand, in the case of a

normal 2d image, this substitution will distort the image. The same situation is true with the rows

of our input matrices when, for example, substituting process p1 row with process p2 row. Note

that correlations might exist between the features (e.g. when CPU percent goes up, memory usage

goes up as well); however, we did not use this information in our work. We believe that obtaining

57

correlation information about the features to be used in ordering our input matrices might help

with getting better results. It is true for processes as well, although it is not as easy because of the

processes’ dynamic nature and the possibility of newly created processes during testing time.

4.5 Conclusion

In this work, we introduced a malware detection method for VMs using 2d CNN model by utilizing

performance metrics. Results showed a reasonable accuracy of ' 79% on the testing dataset.

We noted the problem of mislabeling and we improved the performance by introducing 3d CNN

model which uses samples over a time-window. It adds a 3rd dimension (depth) to the 2d input

matrix representing the samples inside the defined time window. Results showed a significant

improvement of accuracy of ' 90% for 3d CNN 2 classifier which is practically acceptable.

In the future, we plan to dedicate a pre-training step to evaluate the effectiveness of ordering the

processes and features in the input matrix. We also plan to increase the scale of our experiments

by using more malware binaries which will allow evaluating different time-window sizes for the

3d CNN models as well as using deeper CNN models.

58

CHAPTER 5: ONLINE MALWARE DETECTION USING SHALLOW

CONVOLUTIONAL NEURAL NETWORKS IN CLOUD

AUTO-SCALING SYSTEMS

5.1 Introduction

Cloud computing characteristics [56] enable novel attacks and malware [21, 31, 33, 34, 39, 90]. In

particular, cloud has become a major target for malware developers since a large number of Virtual

Machines (VMs) are similarly configured. Automatic provisioning and auto configuration tools

have led to the widespread use of auto-scaling, where VMs scale-in/out on demand. Applications

utilizing auto-scaling architectures1 is one of the most prevalent in cloud. As a result, a malware

that infects one VM can be easily reused to infect other VMs that are similarly configured or

imaged. To that end, cloud has become a very interesting target to most attackers.

In malware analysis, files are scanned before execution on the actual system either through

static or dynamic analysis. Once an executable/application is deemed to be benign, it executes on

the system without further monitoring. Such methods often fall short in the case of cloud mal-

ware injection [34], a threat where an attacker injects a malware to manipulate the victim’s VMs,

because the initial scan is usually bypassed or malware is injected into an already scanned be-

nign application. Consequentially, the need for online malware detection, where you continuously

monitor the whole system for malware, has become a necessity.

Few works [1,23,62,84,87] exist in the domain of online malware detection in cloud. Typically,

machine learning is used in online malware detection. First, a set of system features are selected

and used to build a model. Then, this model is used for malware detection. Some works use

system calls while others use performance metrics. Although such works target cloud systems in

some sense, there is no real difference between standard online malware detection methods and

cloud-specific methods except in the features selected for machine learning, where cloud-specific

1Amazon architecture references. https://aws.amazon.com/architecture/

59

methods restrict the selection of features to those that can only be fetched through the hypervisor.

One can argue that such works focus on malware detection in VMs running on a hypervisor.

However, what makes cloud computing powerful is the novel characteristics that they sup-

port [56] such as on-demand self-service, resource pooling and rapid elasticity via auto-scaling.

In this chapter, we explore malware detection approaches that can leverage specific cloud char-

acteristics. In particular, we focus on auto-scaling. The high-level idea is that in an auto-scaling

scenario, where multiple VMs are spawned based on demand, each of those VMs is typically a

replica. This means the “behavior” of those VMs need to closely correspond with each other.

If a malware were to be injected online into one of those VMs, the infected VM’s behavior will

likely deviate at some point in time. Our work seeks to detect such deviations when they occur.

A sophisticated attacker can attempt to simultaneously inject malware into multiple VMs, which

could induce similar behavior across those VMs, and thereby escape our detection mechanisms.

This is an interesting challenge and we plan this for future work. This chapter focuses on malware

detection when exactly one of the VMs in an auto-scaling environment is compromised.

In Chapter 3, we showed that malware can be effectively detected using black-box VM-level

performance and resource utilization metrics (such as CPU and memory utilization). Although, the

work showed promising results for highly active malware (e.g., ransomware), it is not as effective

for low-profile malware that would not impact black-box level resource utilization significantly.

Subsequently, in Chapter 3, we introduced a CNN based online malware detection method for

low-profile malware. This work utilized resource utilization metrics for various processes within a

VM. The method was able to detect low-profile malware with accuracy of ' 90%. Although, this

work yielded good results, it targeted a single VM much like other related works.

Unlike our prior work and other related works, this chapter targets malware detection when

multiple VMs are running, while leveraging specific cloud characteristics such as auto-scaling.

In terms of the approach, first, we introduce and discuss a cloud-specific online malware de-

tection approach. It applies 2d CNN, a deep learning approach, for online malware detection by

utilizing system process-level performance metrics. A 2d input matrix/image is represented as the

60

unique processes × selected features. We assume that similarly configured VMs should have sim-

ilar behavior, so we train a single model for VMs that belongs to the same group such as the group

of application servers in a 3-tier auto-scaling web architecture of web servers, application servers

and database servers. Next, we introduce a new approach that leverages auto-scaling. Here, we

consider correlations between multiple VMs by pairing samples from pairs of those VMs. Samples

collected at the same time from multiple VMs are paired and fed into CNN as a single sample.

CNN is chosen because of its simplicity and training speed as opposed to other deep learn-

ing approach (e.g. Recurrent Neural Networks). Also, for the sake of practicality, we show that

even a shallow CNN (LeNet-5) trained only for a few epochs can be effective for online malware

detection. In summary the contributions of this chapter are two-fold:

• We introduce a 2d CNN based online malware detection approach for multiple VMs.

• We improve 2d CNN by introducing a new approach by pairing samples from different VMs

to accommodate for correlations between those VMs.

To the best of our knowledge, our work is the first to focus on leveraging cloud-specific char-

acteristics for online malware detection. The remainder of this chapter is organized as follows.

Section 5.2 explains the key intuition about the idea presented in this chapter. Section 5.3 out-

lines the methodology including the architecture of the CNN models used.Section 5.4 describes

the experiments setup and results. Finally, Section 5.5 summarizes and concludes this chapter.

5.2 Key Intuition

In classification-based process-level online malware detection methods, a machine learning model

is trained on benign and malicious samples of processes where the goal is to classify a new input

sample. The data collection phase, usually, works by running a VM for some time (benign phase)

and then injecting a malware (malicious phase) while logging the required data. This is referred

to as a single run. The data set includes multiple runs with same/different malware which is later

divided into training and test data sets. In other words, given sample X at time t (Xt), the task is

61

Figure 5.1: Number of used voluntarily context switches over 30 minutes for two different exper-
iment runs of the same unique process.

0 5 10 15 20 25 30

Time

0

20

40

60

80

100

n
u
m
_c
tx
_s
w
it
ch

e
s-
v
o
lu
n
ta
ry

Figure 5.2: Number of used voluntarily context switches over 30 minutes for one experiment run
of 10 VMs in an auto-scaling scenario. Red denotes a VM with an injected malware.

to compare Xt to previously seen samples of the training data set. For a single run, we deal with

individual samples of a single VM. Thus, we refer to this approach as Single VM Single Sample

(SVSS).

SVSS can work in an auto-scaling scenario where we have a trained model for each auto-

scaling tier; however, input samples will lose some information. Note that multiple runs of a single

62

VM is not the same as multiple VMs running at the same time. The reason depends mostly on

the architecture in place. If a VM has some effects over another VM, then input samples from

single VM in multiple runs will lose this information. To that end, we extend SVSS and build an

auto-scaling testbed where we can learn from multiple VMs running at the same time. We refer to

it as Multiple VMs Single Sample (MVSS).

The MVSS approach, however, has a disadvantage in the context of process-level performance

metrics. Processes have a very dynamic nature, meaning spikes are always happening. These

spikes are mostly due to sudden events or traffic surges. For example, Figure 5.1 shows two

different runs of the same process for the number of voluntary context switches. No malware is

running inside either of the two VMs. During the training phase, two patterns will be learned, a

smooth recurring up and down pattern and a pattern where there can be some spikes. During the

testing phase, if either pattern is seen, it will be regarded as benign.

On the other hand, Figure 5.2 shows one run of the same unique process in 10 VMs (belongs

to the same group of VMs in an auto-scaling scenario). VMs are running at the same time in an

auto-scaling scenario. The red colored process belongs to a VM where a malware was injected.

There are two major spikes in the figure. The first spike happened in the same unique process of

all the VMs. If one of the processes did not have that spike and it was classified as benign, it might

be a misclassification since such spike should happen to all VMs at the same time. The second

spike is caused by the malware injected. MVSS and SVSS will lose such correlations between

VMs since they learn from individual samples regardless of the scenario.

Consequentially, we introduce a new approach where the correlation of multiple VMs is uti-

lized by pairing samples (at the same time). In other words, given sample X of VM vmi at time

t (Xvmit
), the idea is to compare Xvmit

to previously seen paired samples of multiple VMs. We

refer to this approach as Multiple VMs Paired Samples (MVPS).

63

(a) Total number of processes (b) Number of unique processes

(c) Total number of processes (d) Number of unique processes

Figure 5.3: Total number of standard processes versus the number of unique processes in VMs
running at the same time in an auto-scaling scenario. Red portions represents the VM where a
malware started executing.

5.3 Methodology

This section provides an overview of the methodology used in this work. Just like the work in

Chapter 4, we use per process-level performance data as features (depicted in Table 4.1). We also

define a unique process which is identified by three elements: process name (name), command line

used to execute the process (cmd), and hash of binary executables (if applicable, md5 hash).

Beside the reasons mentioned in 4.2.3, unique processes help in smoothing the number of pro-

cesses in a highly active server because most malware create new unique processes since malware

64

CNN Optimizer

….

Trained
CNN Model

Prediction

Testing samples

Train samples

Figure 5.4: Single VMs Single Samples (MVSS)

typically run different applications than the existing processes. Figure 5.3 shows two different ex-

periments (each with a different malware) where the total number of processes are compared to the

number of unique processes. Red portions are the start time of malware execution. As shown in

the figure, the total number of processes in such a highly active VM doesn’t help much in revealing

the malware behavior as opposed to the unique processes case. Note that throughout this chapter

the terms process and unique process are used interchangeably where both are referring to unique

process.

5.3.1 Malware Detection in Multiple VMs using Single Samples (MVSS)

Online malware detection in a single VM (SVSS, used in Chapter 4) is shown in Figure 5.4,

where we have samples Xtk , where X is a data sample collected at time tk during one experiment.

Samples from many runs are collected and are fed to the CNN optimizer where the learning process

65

CNN Optimizer

….

Trained
CNN Model

Prediction

….

….

.

.

.

.

.

.

.

.

.

Train samples

Test samples

Figure 5.5: Multiple VMs Single Samples (MVSS)

takes place. Then the trained CNN model is used for predictions.

In this chapter we target multiple VMs in an auto-scaling scenario. Figure 5.5 shows the

approach used to handle multiple VMs. In fact, we use the same simple approach used in SVSS

except in the auto-scaling scenario we have samples Xvmitk
from multiple VMs running at the

same time, where X is a sample of VM vmi at time tk. Similarly, these samples are used to train

the CNN model which is, in turn, used in predictions.

5.3.2 Malware Detection in Multiple VMs using Paired Samples (MVPS)

The MVPS approach is inspired by the duplicate questions detection problem in online Q&A

forums like Stack Overflow and Quora. The problem focuses on determining semantic equivalence

between pairs of questions. It is a simple yet complicated binary classification problem where two

questionsQ1 andQ2 are given and the task is to determine whether they are duplicates or not. Note

that the two questions are not exactly the same, but semantically equivalent.

Based on the aforementioned assumption that VMs belong to the same group should behave

similarly, we use the same analogy to tackle our problem. To that end, we change the formalization

66

CNN Optimizer

….

Trained
CNN Model

Prediction

….

….

.

.

.

.

.

.

.

.

.

Train samples

Test samples

.

.

.

.

….

Samples Pairing

Figure 5.6: Multiple VMs Paired Samples (MVPS)

of our problem by using the same duplicate questions problem concept except, in our case, we are

given two samples Xvmitk
and Xvmjtk

, where Xvmitk
is a 2d matrix (picture in CNN terminology)

that belongs to vmi at time tk and Xvmjtk
is a 2d matrix that belongs to vmj at the same time tk.

Figure 5.6 shows the approach used for pairing samples. Our goal is to find whether Xvmitk
and

Xvmjtk
are duplicates (similar). This is done by pairing the two samples as an input to CNN. Two

samples are considered similar if they are benign, whereas two samples are considered not similar

if either one of them is malicious (red bordered samples are malicious).

By pairing samples, we are actually taking into account the correlations between samples of

different VMs at the same time as well as the history of samples (previously seen patterns). The

pairing method works in an auto-scaling scenario where there are at least two VMs of the same

group. Note that it is important that we only pair samples of the same time as pairing samples of

different times might have completely different values. Also, note that we only inject malware in

a single VM, so we don’t have multiple infected VMs in a single experiment run.

Pairing all samples is a very time consuming operation as the number of samples will be

squared. In addition, that will introduce a class imbalance problem since we are only infecting

a single VM. Although, practically, this may not be the case in real scenarios, we believe that in-

67

Input layer

Convolution Layer 1 + ReLU

Max Pooling Layer 1

Convolution Layer 2 + ReLU

Max Pooling Layer 2

Fully Connected Layer 1 + ReLU

Fully Connected Layer 2 + ReLU

Standardized Input Matrix

Output Prediction

Fully Connected Layer 3

Figure 5.7: CNN Model (LeNet-5)

fecting multiple VMs is hard to occur at the exact same time and that a malware needs sometime

to reconnaissance and infect other similarly configured VMs. Consequently, as shown in Figure

5.6, we pair a malicious sample with all benign samples from other machines at a particular time.

On the other hand, we pair each benign sample sequentially with a sample from the next VM.

5.4 Experiment Setup and Results

In this section, first, we present the CNN model used in this work. Second, we briefly review our

experimental setup. Then, we provide the results of using the MVSS approach. Lastly, we show

that using the samples pairing MVPS approach can significantly improve the results.

5.4.1 CNN Model Architecture

A deep CNN model would require considerably larger processing power. In reality, this might not

be affordable. For the sake of practicality, we chose to work with a shallow CNN. We show that

even a shallow CNN can achieve near optimal results in our pairing approach. Figure 5.7 shows

68

the CNN model used in this work. We chose LeNet-5 [48] CNN model. Although, it is currently

by no means one of the state-of-the-art CNN models, its shallowness makes it one of the best

candidates in practice. Note that in the context of online malware detection, the model might need

to be trained multiple times based on the deployed workloads in place. For example, a 3-tier web

architecture and a Hadoop architecture might need different trained models.

As mentioned in Section 4.3.1, the CNN model receives a standardized 2d matrix. Lenet-5

CNN consists of 7 layers (excluding the input layer). The input layer is a 2d matrix of 120 × 45

(120 × 90 for MVPS), representing a sample of maximum 120 processes and 45 features. Empty

processes rows are padded with zeros. The first layer is a convolutional layer with 32 kernels

of size 5 × 5 with zero padding ending. This results in 32 feature maps of size 120 × 45. The

second layer is a max pool layer of size 2 ×2 in which down size each dimension by a magnitude

of 2, resulting in 32 feature maps of size 60 × 23 (60 × 45 for MVPS). The third layer, another

convolutional layer with 64 kernels of size 60× 23, is followed by a max pool layer which results

in 64 down sized feature maps of size 30× 12 (30× 23 for MVPS). The fifth and sixth layers are

fully connected layers of size 1024 and 512, respectively. The last layer is another fully connected

layer of size 2, representing the prediction class (malicious or benign).

ReLU activation is used after every convolutional and fully connected layer (excluding the last

fully connected layer). Adam Optimizer, a stochastic gradient descent with automatic learning

rate adaptation, is used to train the model. Adam Optimizer learning rate is a maximum change

threshold to control how fast the learning process can be (set to 1e − 5). The optimizer works by

minimizing the loss function (mean cross entropy). Random grid search is used to tune the CNN

parameters (e.g., mini batch size).

5.4.2 Experimental Setup

Our experiments testbed setup is similar to that of Chapter 4. Our experiments were conducted

on Openstack and a 3-tier web architecture1, with auto-scaling enabled on the web and application

server layers. Traffic was generated based on ON/OFF Pareto distribution.

69

0 30 60

Time
(min)

Clean phase Malware injection Point.
113 Malware executables are
injected (one per experiment).

Period of malware
activity

Collect 28 different process performance metrics
every 10 seconds for ≃ 100 processes

Figure 5.8: Data collection overview

Figure 5.9: Optimized MVSS CNN classifier results

The data collection process is shown in Figure 5.8. Each of our experiments was 1 hour long.

The first 30 minutes are the clean phase. The second 30 minutes are malicious phase where a

malware is injected. A set of 113 malware were used each for a different experiment. All firewalls

were disabled and an internet connection was provided to avoid any hindrance to the malware

malicious intentions. Samples were collected at 10 seconds intervals, so during a single experiment

360 samples were collected.

5.4.3 MVSS and MVPS Results

Like most standard machine learning classification problems, data was split into three sets: training

(60%), validation (20%) and testing (20%) sets. We split on the number of experiments. The 113

experiments were split to 67, 23 and 23 respectively. This makes sure that validation and testing

phases are exposed to unseen malware. After training the model on the training set, validation

70

Figure 5.10: Optimized MVPS CNN classifier results

set is used to tune the model parameters as well as choosing the highest accuracy model. The

model is evaluated against the validation set after each epoch and the highest accuracy model is

chosen. Then the testing set is used to test the chosen model (optimized classifier). For the sake of

practicality, we chose a shallow CNN model (LeNet-5) so it can be trained fast with as few epochs

as possible.

Figure 5.9 shows the results of MVSS optimized classifier. The optimized classifier yields

accuracy of' 90% while precision, recall and fscore are' 85% on the test data set. This approach

achieved good results compared to the similar simple 2d CNN approach in 4.3.6. There are two

reasons for this improvement. First, increasing the number of data (113 malware experiments as

opposed to 25). Second, using data from multiple VMs as opposed to a single VM; however, we

still had to filter part of the data to balance our data sets (ratio of benign to malicious samples).

Figure 5.10 shows the results of MVPS optimized classifier. There is a significant increase in

the four evaluation metrics when compared to the MVSS classifier. The optimized chosen MVPS

classifier had a highest accuracy of ' 98.2% during the validation phase. It yielded a ' 96.9%

accuracy on the test data set. Fscore, recall and precision all jumped to ' 91% on the test data set.

The main reason for this high improvement is that the MVPS approach finds correlations between

the multiple VMs running at the same time which is very beneficial in an auto-scaling scenario.

In both cases, mini-batch size of size 64 and learning rate of 1e − 5 yielded the best results.

71

Note that we don’t use a dropout layer (usually used to avoid over-fitting) since it is not useful

when dealing with a shallow CNN trained for only a few epochs.

5.5 Conclusion

In this chapter, we introduced an online malware detection approach to leverage the behavior cor-

relation between multiple VMs in an auto-scaling scenario. The approaches introduced used 2d

CNN for malware detection. First, we introduced the MVSS method which targets multiple VMs

using single individual samples. MVSS achieved good results with an accuracy of ' 90%. Then,

we introduced MVPS which targets multiple VMs using paired samples. MVPS takes the previous

approach a step forward by pairing samples from multiple VMs which helps in finding correlations

between the VMs. MVPS showed a considerable improvement over MVSS with an accuracy of

' 96.9%. In the future, we plan to use different use case scenarios such as Hadoop and Containers.

We also plan to perform an analysis using different CNN models architecture. Finally, we plan to

develop techniques to handle the situation when multiple VMs are infected simultaneously by an

attacker.

72

CHAPTER 6: CONCLUSION AND FUTURE WORK

As cloud continues to emerge and offer new concepts and capabilities, new attacks will get advan-

tage of them. In order to keep up with the cycle of threats and mitigation that never ends, we need

to leverage these new capabilities for securing the cloud.

The goal of this dissertation is to provide a comprehensive framework for cloud security mon-

itoring by leveraging cloud essential characteristics (e.g., on-demand self-service) and bridge the

gap between cloud security and machine learning (ML). We particularly focus on the Infrastructure

as a Service (IaaS) layer in the cloud.

6.1 Summary of Contributions

We focused on the auto-scalability feature in the cloud as a starting point for leveraging cloud

characteristics. As a result a fundamental assumption is made: VMs that belong to the same

group (e.g. webservers group in a 3-tier web architecture) should behave similarly with only small

deviations. This assumption is true to a great extent since in practice auto-scaling is done based on

the same configuration script, thus VMs (intended for the same purpose) that was spawned from

the same configuration scripts should behave similarly.

In Chapter 3, we developed an online anomaly detection system for cloud IaaS. It works by

clustering the VMs of a single tenant using performance black-box metrics. Black-box features

assumes only metrics about the VM as a black-box with no prior knowledge of what’s inside

a VM. A 3-tier web architecture was used as a use case where there are 3 tiers (groups) of VMs:

web servers, application servers and database servers with auto-scaling in place according to VMs’

resource usage. We showed that threats like ransomware and EDoS can be effectively detected by

inspecting the performance and resource utilization metrics of VMs as a black-box.

Although the approach in Chapter 3 works well with highly active malware (e.g. ransomware),

it is not as effective for detecting malware that maintains a low-profile of resource utilization. In

Chapter 4, we developed an effective approach for detecting malware by learning behavior from

73

fine-grained and raw process meta-data that are available directly from the hypervisor. The ap-

proach develop is resistant (to great extent) to the aforementioned mislabeling problem. To miti-

gate this problem, we refine the above assumption by assuming that a malware will show malicious

activity within a time window. We demonstrate the effectiveness of this approach by first develop-

ing a standard 2d Convolutional Neural Network (CNN) model that does not incorporate the time

window, and then comparing it with a newly developed 3d CNN model that significantly improves

detection accuracy mainly due to the employment of a time window as the third dimension, thereby

mitigating the mislabeling problem. The approach was tested against unseen set of malware and

proved to be effective with our 2d CNN model reaches an accuracy of 79% and our 3d CNN model

significantly improves the accuracy to 90%.

The aforementioned approach considers a single VM. In order to leverage the auto-scalability

characteristic for better cloud security, we extended the previous work by introducing Multiple

VMs Single Sample (MVSS) and Multiple VMs Paired Samples (MVPS). MVSS is just a simple

extension of the work in Chapter 4 that accepts input from multiple VMs then randomly balance

the data set to avoid class imbalance problems. It achieved an accuracy of ' 90%. MVPS greatly

improved the situation by taking full advantage of auto-scalability. It considers correlations be-

tween running VMs by pairing samples of different VMs at a particular time. MVPS achieved an

accuracy of ' 96.9%.

6.2 Future Directions

There are two directions regarding future research: present day and futuristic research. For present

day research, the work done can be extended by applying and testing multiple architectures (e.g.,

Hadoop systems or containers). It can also include implementing different ML models and doing

a thorough comparison between them. Another direction can be investigating more cloud charac-

teristics and leveraging them for cloud security.

Although, present day research is very important as it’s more on the practical side, futuris-

tic radical ideas are very challenging and more interesting. Interesting futuristic research can be

74

summarized in two questions:

1. Can we automatically evaluate a security monitoring system?

Evaluation of cloud security monitoring frameworks or anomaly detection techniques in gen-

eral is a very difficult and challenging task due to several reason. First, it is always difficult to

get data from real world organizations due to privacy issues. Second, even with real world data,

labeling the data as malicious, normal, or system failures can be very expensive task since it is

always done by human experts. In fact, in most cases it is infeasible because of the cost and the

enormous amount of time needed. Third, concept drift, which states that the constant change of

traffic as well as other environmental changes can not only introduces new types of anomalies (e.g.

attacks) but can also change the definition of "normal" behavior. Thus, automatic evaluation for

anomaly detection techniques is still an open question. Our focus is on developing an automatic

evaluation process for cloud specific security monitoring framework. Some work tried to propose

semi-solutions. For example, [47] proposed a way of evaluating unlabeled data. The work was

done by inspecting user profiles and comparing the activity during an intrusion to the activity dur-

ing normal use. The drawback of this approach is that it is very specific to a class of attacks where

a user is malicious.

This problem can be investigated by defining set of metrics for automatic evaluation. One

promising approach is to look at this problem as a reinforcement learning problem. Reinforcement

learning problems mostly lies in the area of robotics and computer programs that try to learn

playing games. Certain actions are taken by the robot and a reward is given based on these actions

in a specific environment. In this domain, it may be easier defining actions (e.g. rules of playing

a game) and reward (e.g. win or loss the game). The robot is surely getting a feedback based on

these rewards. On the other hand, in our case, defining the actions that a cloud security monitoring

can take and rewards based on its actions is a challenging problem. Actions can be, not limited to,

killing or suspending a VM or a process inside a particular VM, while rewards can be given based

impact these actions had on performance or the distance of data points of particular VM (e.g. an

actions caused VM data points to be closer to its cluster’s centroid).

75

2. As systems evolve over time, can we develop security monitoring agents with the ability to

adapt and evolve?

The aforementioned concept drift is a serious problem with any anomaly detection system as

the environment in which the anomaly detection system lies tends to change overtime. What is

supposed to be normal data points can change and become anomalies at some point in the future.

Some ideas to deal with concept drift were proposed in [88] which relies on using a fixed or

dynamic timing window to choose a range of instances and then train a new classifier, while others

proposed adaptive anomaly detection (AADs) (e.g. [52]) based on detecting substantial changes

within the data and update AADs accordingly. ADDs are promising approaches however the major

drawback lies in the built-in forgetting mechanism [58]. They tend to adapt to the new changes and

forget about the past. The need for adapting while keeping history intact can be potential solution.

We believe that the answer to this question greatly depends on the first question. If we suc-

cessfully and practically have a way to automatically evaluate security monitoring agents, we can

employ different technique to achieve our goal. Assuming we have an answer to the first question,

we can use the evolution concept where we have an initial generation of security monitoring agents

(each is slightly different) and they evolve over time. Evolution can be done by using genetic al-

gorithms (GAs) which are mainly used in optimizations problems. In a GA, an initial population

is chosen and individuals (in our case security monitoring agents) evolve in the next generation.

Deciding which individuals should survive in the next generation is based on a defined Fitness

function. The automatic evaluation process can be used as a fitness function. The next generation

of agents is selected based on concepts like: mutation (where a subset of an agent’s chromosomes

are randomly changed), crossover (where an agent chromosomes are constructed by taking more

than one parent chromosomes), and selection (where an agent is selected to live as it is in the next

generation). This approach allows us to overcome the built-in mechanism problem because some

agents in the population will keep the old chromosomes intact while being selected to the next gen-

erations. It also allows us to have multiple agents, where each agent is specialized in a particular

anomaly class/type, and those agents can evolve and adapt to new unseen anomalies. Our ultimate

76

goal is to end up with a number of security monitoring agents where each agent specialize in a

particular anomaly class (e.g. malware, ransomware, system failures or DDoS).

77

BIBLIOGRAPHY

[1] Mahmoud Abdelsalam, Ram Krishnan, and Ravi Sandhu. Clustering-based IaaS cloud mon-

itoring. In 10th IEEE CLOUD. IEEE, 2017.

[2] Tony Abou-Assaleh and et al. N-gram-based detection of new malicious code. In COMPSAC,

volume 2. IEEE, 2004.

[3] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè. Cloud monitoring:

A survey. Computer Networks, 57:2093–2115, 2013.

[4] Rakshit Agrawal, Jack W Stokes, Mady Marinescu, and Karthik Selvaraj. Robust neural mal-

ware detection models for emulation sequence learning. arXiv preprint arXiv:1806.10741,

2018.

[5] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. Zero-day

malware detection based on supervised learning algorithms of api call signatures. In Pro-

ceedings of the Ninth Australasian Data Mining Conference-Volume 121, pages 171–182.

Australian Computer Society, Inc., 2011.

[6] Ben Athiwaratkun and Jack W Stokes. Malware classification with LSTM and GRU language

models and a character-level cnn. In ICASSP. IEEE, 2017.

[7] Fatemeh Azmandian, Micha Moffie, Malak Alshawabkeh, Jennifer Dy, Javed Aslam, and

David Kaeli. Virtual machine monitor-based lightweight intrusion detection. ACM SIGOPS

Operating Systems Review, 45, 2011.

[8] Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in Neural Informa-

tion Processing Systems, 2013.

[9] Asa Ben-Hur, David Horn, Hava T Siegelmann, and Vladimir Vapnik. Support vector clus-

tering. Journal of machine learning research, 2:125–137, 2001.

78

[10] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Jour-

nal of Machine Learning Research, 13, 2012.

[11] Pavel Berkhin. A survey of clustering data mining techniques. In Grouping multidimensional

data, pages 25–71. Springer, 2006.

[12] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152. ACM, 1992.

[13] Christopher JC Burges. A tutorial on support vector machines for pattern recognition. Data

mining and knowledge discovery, 2:121–167, 1998.

[14] Claudia Canali and Riccardo Lancellotti. Automated clustering of virtual machines based on

correlation of resource usage. Communications Software and Systems, 8:102–109, 2012.

[15] Claudia Canali and Riccardo Lancellotti. Automated clustering of vms for scalable cloud

monitoring and management. In Software, 20th SoftCOM, 2012, pages 1–5. IEEE, 2012.

[16] Claudia Canali and Riccardo Lancellotti. Automatic virtual machine clustering based on

bhattacharyya distance for multi-cloud systems. In Proc. of MultiCloud, pages 45–52. ACM,

2013.

[17] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM

computing surveys (CSUR), 41:15, 2009.

[18] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–

297, 1995.

[19] Koby Crammer and Yoram Singer. On the learnability and design of output codes for multi-

class problems. Machine learning, 47:201–233, 2002.

[20] Mark E Crovella and Azer Bestavros. Self-similarity in world wide web traffic: Evidence

and possible causes. IEEE/ACM Transactions on networking, 5, 1997.

79

[21] Kamal Dahbur, Bassil Mohammad, and Ahmad Bisher Tarakji. A survey of risks, threats and

vulnerabilities in cloud computing. In ISWSA, 2011.

[22] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale malware classification

using random projections and neural networks. In ICASSP. IEEE, 2013.

[23] Joel A Dawson, Jeffrey T McDonald, Lee Hively, Todd R Andel, Mark Yampolskiy, and

Charles Hubbard. Phase space detection of virtual machine cyber events through hypervisor-

level system call analysis. In Data Intelligence and Security (ICDIS), 2018 1st International

Conference on, pages 159–167. IEEE, 2018.

[24] John Demme and et al. On the feasibility of online malware detection with performance

counters. In ACM SIGARCH Computer Architecture News, volume 41. ACM, 2013.

[25] Gianluca Dini, Fabio Martinelli, Andrea Saracino, and Daniele Sgandurra. Madam: a multi-

level anomaly detector for android malware. In International Conference on Mathemati-

cal Methods, Models, and Architectures for Computer Network Security, pages 240–253.

Springer, 2012.

[26] Kai-Bo Duan and S Sathiya Keerthi. Which is the best multiclass svm method? an empirical

study. In International Workshop on Multiple Classifier Systems, pages 278–285. Springer,

2005.

[27] Mojtaba Eskandari and Sattar Hashemi. Ecfgm: enriched control flow graph miner for un-

known vicious infected code detection. Journal in Computer Virology, 8:99–108, 2012.

[28] Mojtaba Eskandari and Sattar Hashemi. A graph mining approach for detecting unknown

malwares. Journal of Visual Languages & Computing, 23:154–162, 2012.

[29] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–

231, 1996.

80

[30] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid computing

360-degree compared. In Grid Computing Environments Workshop, 2008. GCE’08, pages

1–10. Ieee, 2008.

[31] Ali Gholami and Erwin Laure. Security and privacy of sensitive data in cloud computing: a

survey of recent developments. arXiv preprint arXiv:1601.01498, 2016.

[32] Daniel Gonzales, Jeremy Kaplan, Evan Saltzman, Zev Winkelman, and Dulani Woods.

Cloud-trust-a security assessment model for infrastructure as a service (iaas) clouds. 2015.

[33] Bernd Grobauer, Tobias Walloschek, and Elmar Stocker. Understanding cloud computing

vulnerabilities. IEEE Security & Privacy, 9, 2011.

[34] Nils Gruschka and Meiko Jensen. Attack surfaces: A taxonomy for attacks on cloud services.

In IEEE CLOUD, pages 276–279, 2010.

[35] Geoffrey E Hinton and et al. Improving neural networks by preventing co-adaptation of

feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[36] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks

are universal approximators. Neural networks, 2:359–366, 1989.

[37] Wenjie Hu, Yihua Liao, and V Rao Vemuri. Robust support vector machines for anomaly

detection in computer security. In ICMLA, pages 168–174, 2003.

[38] Wenyi Huang and Jack W Stokes. MtNet: a multi-task neural network for dynamic mal-

ware classification. In Detection of Intrusions and Malware, and Vulnerability Assessment.

Springer, 2016.

[39] Meiko Jensen, Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono. On technical security

issues in cloud computing. In IEEE CLOUD, 2009.

81

[40] Zeliang Kan, Haoyu Wang, Guoai Xu, Yao Guo, and Xiangqun Chen. Towards light-weight

deep learning based malware detection. In 2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC), pages 600–609. IEEE, 2018.

[41] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping

Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp

minima. arXiv preprint arXiv:1609.04836, 2016.

[42] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[43] Dhilung Kirat and Giovanni Vigna. Malgene: Automatic extraction of malware analysis

evasion signature. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 769–780. ACM, 2015.

[44] Teuvo Kohonen. The self-organizing map. Neurocomputing, 21:1–6, 1998.

[45] J Zico Kolter and Marcus A Maloof. Learning to detect and classify malicious executables in

the wild. Journal of Machine Learning Research, 7, 2006.

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[47] Terran Lane, Carla E Brodley, et al. Sequence matching and learning in anomaly detection

for computer security. In AAAI Workshop: AI Approaches to Fraud Detection and Risk

Management, pages 43–49, 1997.

[48] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[49] Will E Leland, Murad S Taqqu, Walter Willinger, and Daniel V Wilson. On the self-similar

nature of ethernet traffic (extended version). IEEE/ACM Transactions on networking, 2, 1994.

82

[50] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung. Intrusion

detection system: A comprehensive review. Journal of Network and Computer Applications,

36:16–24, 2013.

[51] T Warren Liao. Clustering of time series data a survey. Pattern recognition, 38:1857–1874,

2005.

[52] Yihua Liao, V Rao Vemuri, and Alejandro Pasos. Adaptive anomaly detection with evolving

connectionist systems. Journal of Network and Computer Applications, 30:60–80, 2007.

[53] Patrick Luckett, J Todd McDonald, and Joel Dawson. Neural network analysis of system call

timing for rootkit detection. In 2016 Cybersecurity Symposium (CYBERSEC), pages 1–6.

IEEE, 2016.

[54] James MacQueen et al. Some methods for classification and analysis of multivariate obser-

vations. In Proc. of the fifth Berkeley symposium on mathematical statistics and probability,

volume 1, pages 281–297. Oakland, CA, USA., 1967.

[55] Oded Maimon and Lior Rokach. Data Mining and Knowledge Discovery Handbook, vol-

ume 2. Springer, 2005.

[56] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[57] Jesús Montes, Alberto Sánchez, Bunjamin Memishi, María S Pérez, and Gabriel Antoniu.

Gmone: A complete approach to cloud monitoring. Future Generation Computer Systems,

29:2026–2040, 2013.

[58] Michael D Muhlbaier and Robi Polikar. An ensemble approach for incremental learning in

nonstationary environments. In International Workshop on Multiple Classifier Systems, pages

490–500. Springer, 2007.

83

[59] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. Intrusion detection using neural

networks and support vector machines. In Neural Networks, 2002. IJCNN’02. Proceedings

of the 2002 International Joint Conference on, volume 2, pages 1702–1707. IEEE, 2002.

[60] Thomas Dyhre Nielsen and Finn Verner Jensen. Bayesian networks and decision graphs.

Springer Science & Business Media, 2009.

[61] Meltem Ozsoy, Caleb Donovick, Iakov Gorelik, Nael Abu-Ghazaleh, and Dmitry Ponomarev.

Malware-aware processors: A framework for efficient online malware detection. In High

Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on,

pages 651–661. IEEE, 2015.

[62] Husanbir S Pannu, Jianguo Liu, and Song Fu. Aad: Adaptive anomaly detection system for

cloud computing infrastructures. In Reliable Distributed Systems (SRDS), 2012 IEEE 31st

Symposium on, pages 396–397. IEEE, 2012.

[63] Duc Truong Pham, Stefan S Dimov, and CD Nguyen. Selection of k in k-means clustering.

Proc. of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering

Science, 219:103–119, 2005.

[64] Radu S Pirscoveanu, Steven S Hansen, Thor MT Larsen, Matija Stevanovic, Jens Myrup Ped-

ersen, and Alexandre Czech. Analysis of malware behavior: Type classification using ma-

chine learning. In Cyber Situational Awareness, Data Analytics and Assessment (CyberSA),

2015 International Conference on, pages 1–7. IEEE, 2015.

[65] J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

[66] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[67] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of

my cloud: exploring information leakage in third-party compute clouds. In Proc. of the 16th

ACM CCS, pages 199–212. ACM, 2009.

84

[68] Salvatore Ruggieri. Efficient c4. 5 [classification algorithm]. IEEE transactions on knowledge

and data engineering, 14:438–444, 2002.

[69] S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier methodology.

IEEE transactions on systems, man, and cybernetics, 21:660–674, 1991.

[70] Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection using two

dimensional binary program features. In 10th MALWARE. IEEE, 2015.

[71] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C

Williamson. Estimating the support of a high-dimensional distribution. Neural computa-

tion, 13:1443–1471, 2001.

[72] Seonhee Seok and Howon Kim. Visualized malware classification based-on convolutional

neural network. Journal of the Korea Institute of Information Security and Cryptology, 26,

2016.

[73] Asaf Shabtai and et al. Detection of malicious code by applying machine learning classifiers

on static features: A state-of-the-art survey. information security technical report, 14, 2009.

[74] Taeshik Shon and Jongsub Moon. A hybrid machine learning approach to network anomaly

detection. Information Sciences, 177:3799–3821, 2007.

[75] Gaurav Somani, Manoj Singh Gaur, and Dheeraj Sanghi. Ddos/edos attack in cloud: affecting

everyone out there! In Proc. of the 8th SIN, pages 169–176. ACM, 2015.

[76] Qing Song, Wenjie Hu, and Wenfang Xie. Robust support vector machine with bullet hole

image classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-

cations and Reviews), 32:440–448, 2002.

[77] Andrew H Sung and Srinivas Mukkamala. Identifying important features for intrusion de-

tection using support vector machines and neural networks. In Applications and the Internet,

2003. Proceedings. 2003 Symposium on, pages 209–216. IEEE, 2003.

85

[78] Johan AK Suykens and Joos Vandewalle. Least squares support vector machine classifiers.

Neural processing letters, 9:293–300, 1999.

[79] Gil Tahan, Lior Rokach, and Yuval Shahar. Mal-ID: Automatic malware detection using

common segment analysis and meta-features. Journal of Machine Learning Research, 13,

2012.

[80] Shun Tobiyama, Yukiko Yamaguchi, Hajime Shimada, Tomonori Ikuse, and Takeshi Yagi.

Malware detection with deep neural network using process behavior. In COMPSAC, vol-

ume 2. IEEE, 2016.

[81] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the

clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review,

39:50–55, 2008.

[82] Antoine Varet and Nicolas Larrieu. Realistic network traffic profile generation: Theory and

practice. Computer and Information Science, 7, 2014.

[83] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural

networks using dropconnect. In Proceedings of the 30th international conference on machine

learning (ICML-13), 2013.

[84] Chengwei Wang. Ebat: online methods for detecting utility cloud anomalies. In Proceedings

of the 6th Middleware Doctoral Symposium, page 4. ACM, 2009.

[85] Chengwei Wang, Vanish Talwar, Karsten Schwan, and Parthasarathy Ranganathan. Online

detection of utility cloud anomalies using metric distributions. In 2010 IEEE NOMS 2010,

pages 96–103. IEEE, 2010.

[86] Chengwei Wang, Krishnamurthy Viswanathan, Lakshminarayan Choudur, Vanish Talwar,

Wade Satterfield, and Karsten Schwan. Statistical techniques for online anomaly detection in

data centers. In 12th IFIP/IEEE IM 2011, pages 385–392. IEEE, 2011.

86

[87] Michael R Watson and et al. Malware detection in cloud computing infrastructures. IEEE

Transactions on Dependable and Secure Computing, 13, 2016.

[88] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden

contexts. Machine learning, 23:69–101, 1996.

[89] Michael Wilson. A historical view of network traffic models. Unpublished survey paper. See

http://www. arl. wustl. edu/ mlw2/classpubs/traffic models, 2006.

[90] Zhifeng Xiao and Yang Xiao. Security and privacy in cloud computing. IEEE Communica-

tions Surveys & Tutorials, 15, 2013.

[91] Zhixing Xu, Sayak Ray, Pramod Subramanyan, and Sharad Malik. Malware detection us-

ing machine learning based analysis of virtual memory access patterns. In 2017 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017.

87

VITA

Mahmoud Abdelsalam was born in February, 1992 in Alexandria, Egypt. He received his B.Sc

degree with a major in Computer Science from the Arab Academy for Science and Technology

and Maritime Transport (AASTMT), Egypt. He subsequently entered the doctoral program in the

Department of Computer Science at the University of Texas at San Antonio (UTSA) in Spring

2014. He joined the Institute for Cyber Security (ICS) at UTSA in Summer 2014 and started

working with Prof. Ravi Sandhu and Dr. Ram Krishnan since 2015. He received his interim M.Sc

degree in 2017. His research interests include security in cloud infrastructures. In particular, his

focus is on developing cloud-specific online malware detection methods.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	LIST OF ABBREVIATIONS
	Chapter 1: Introduction
	Motivation
	Problem and Thesis Statement
	Scope and Terminology
	Assumptions

	Key Contributions
	Related Publication
	Dissertation Organization

	Chapter 2: Background and Related Work
	Cloud Computing Security and Threats
	Machine Learning
	Supervised and Unsupervised Learning
	Machine Learning Models and Techniques

	Machine Learning Based Malware Detection
	Malware File Classification
	Online Malware Detection

	Cloud Malware Detection

	Chapter 3: Black-box Online Malware Detection in Cloud IaaS
	Introduction
	Cloud Monitoring Overview
	Clustering
	K-means
	Sequential K-means

	Framework Overview
	Features Definition
	Features Normalization
	Modified Sequential K-means
	Anomaly Detection
	Parameters tuning

	Experiments Setup
	Testbed Environment
	Use Case Application
	Traffic Generation

	Results and Discussion
	Injected Anomalies
	EDoS
	Ransomware

	Conclusion

	Chapter 4: Malware Detection in Cloud Infrastructures Using CNN
	Introduction
	Methodology
	Convolutional Neural Network
	Process Performance Metrics
	CNN Input

	Experiment Setup and Results
	Preprocessing
	CNN Model Architecture
	Parameters Tuning
	Experimental Setup
	Evaluation
	2d CNN Results
	3d CNN Results

	Discussion
	Conclusion

	Chapter 5: Online Malware Detection using Shallow Convolutional Neural Networks in Cloud Auto-Scaling Systems
	Introduction
	Key Intuition
	Methodology
	Malware Detection in Multiple VMs using Single Samples (MVSS)
	Malware Detection in Multiple VMs using Paired Samples (MVPS)

	Experiment Setup and Results
	CNN Model Architecture
	Experimental Setup
	MVSS and MVPS Results

	Conclusion

	Chapter 6: Conclusion and Future Work
	Summary of Contributions
	Future Directions

	Bibliography
	Vita

