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Introduction and Motivation
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Malware Detection using Machine Learning

Y Y

Online Malware Detection File Classification

1. File classification:
o Given a file/executable, classify if it's a malware or not by running it and observing its
behavior.
o You have a file as a suspect.
o You don't keep monitoring them once they are clean.

2. Online malware detection:
o Assume that the malware got into the system and is executing.
o You keep monitoring the system'’s behavior for malware detection.
o You don't just focus on a given file, but the entire system (processes).
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Online Malware Detection

Features |Extraction

Performance metrics Memory features

System/API calls

What makes an approach cloud-specific?

Most, if not all, cloud-specific research:

v/ Restrict the selection of features to those that can only be fetched through the hypervisor.
X Leverage cloud characteristics for online malware detection.
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Can we leverage cloud characteristics for online malware detection? “Auto-Scaling”
Goal: Leverage auto-scaling for online malware detection by:
e Using 2d CNN to learn processes behavior of multiple VMs.

e Introducing a novel approach of pairing samples to accommodate for correlations between VMs.
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System
Overview
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Methodology
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> We use performance metrics as a way of defining a process behavior.
> 28 process-level performance metrics.
> These metrics can easily be fetched through the hypervisor.

Metric Category

Description

Status

Process status

CPU information

CPU usage percent, CPU times in user space, CPU times in system/kernel space, CPU times of children processes in user
space, CPU times of children processes in system space.

Context switches

Number of context switches voluntary, Number of context switches involuntary

IO counters

Number of read requests, Number of write requests, Number of read bytes, Number of written bytes, Number of read chars,
Number of written chars

Memory information

Amount of memory swapped out to disk, Proportional set size (PSS), Resident set size (RSS), Unique set size (USS), Virtual
memory size (VMS), Number of dirty pages, Amount of physical memory, text resident set (TRS), Memory used by shared
libraries, memory that with other processes

Threads

Number of used threads

File descriptors

Number of opened file descriptors

Network information

Number of received bytes, Number of sent bytes
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Shallow CNN Model

[ Standardized Input Matrix ]

Input layer

Convolution Layer 1 + RelLU activation

Max Pooling Layer 1

Convolution Layer 2 + RelLU activation

Max Pooling Layer 2

Fully Connected Layer 1 + ReLU activation

Dropout Layer

Fully Connected Layer 2

[ Output Prediction ]
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We represent each sample as an image (2d matrix) which will be the input
to the CNN.

Consider a sample x; at a particular time ¢, that records n features
(performance metrics) per process form processes in a VM:

f 1 f 2 - f n
|2 S
Xt — _
P ]
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> CNN requires the same process to remain in the same row in each
sample.

> The CNN in computer vision takes fixed-size images as inputs, so
the number of features and processes must be predetermined.

Use the max process identification number (PID) which is set by the
OS?
o The limit (max number of PIDs) is defined in /proc/sys/kernel/pid_max
which is usually 32k.
o Huge input matrix!
o Change the max PID number defined?
m Kernel confusion if wrap around happened too often.

> there is no guarantee that, for instance, a process with a PID 1000
at a particular time is going to be the same process at a later time.
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> We define a process, referred to as unique process, by a 3-tuple:
O process name
o command line used to run process
o hash of the process binary file (if applicable)

> We set the maximum number of unique processes to 120 to

accommodate for newly created unique processes.

+ + + + + + +

| pid | name | cmd | hash | kb_sent | cpu_user|sample_time |

+ + + + + + + +

| 1241 | php-fpm7.0 | php-fpm: pool www | 7eb8522425... 1 33.61710 | 0.03000 | 2018-06-15 11:19:04 |

| 1240 | php-fpm7.0 | php-fpm: pool www | 7eb8522425... | 38.79308 | 0.00000 | 2018-06-15 11:19:04 |

| 1221 | php-fpm7.0 | php-fpm: master process (/etc/php/7.0/... | 7eb8522425... | 0.00000 | 0.02000 | 2018-06-15 11:19:04 |

| 1287 | python | python | 23eeeb4347... | 0.00000 | 0.15000 |2018-06-15 11:19:04 |

+ + + + + + + +

+ +

| Unique Process |

+ + + + + + +

| name | emd | hash | AVG(kb_sent) | AVG(cpu_user) | sample_time |

+ + + + + + +

| php-fpm7.0 | php-fpm: pool www | 7eb8522425... | 36.2051 | 0.0150 | 2018-06-15 11:19:04 |

| php-fpm7.0 | php-fpm: master process (/etc/php/7.0/... | 7eb8522425... | 0.00000 | 0.0200 | 2018-06-15 11:19:04 |

| python | python | 23eeeb4347...| 0.00000 | 0.1500 | 2018-06-15 11:19:04 |

+ + + + + + +
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Two different experiments (each with a different malware) where the number of

total standard processes are compared to the number of unique processes.
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Disadvantage: Losing information if a VM has some effects on other VMs.
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What do we gain from having multiple VMs in an auto-scaling scenario?
“Correlation between VMs”
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Experimental Setup and Results
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Client Client
> Qur experiments were conducted gadBa,m,meﬁ

on Openstack.

N -

| Web server Web server
: (Apache) (Apache)
> To simulate a real world scenario, : .
we used a 3-tier web architecture =~ [lowSamcer©cava) |
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> Data collection:

Collect 28 different process performance metrics
(Table I) every 10 seconds for = 100 processes

}
L L . Time
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Clean phase Malware injection Point. Period of malware

113 Malware executables are activity
injected (one per experiment).

World Leading Research with Real World Impact! m%

’3 Computer Science

© Mahmoud Abdelsalam



I-C-S Results C-SPECC

. - Center for Security and Privacy
The Institute for Cyber Security Enhanced Cloud Computing

100 100
— Bl Precision Il Precision
84.0 85.1 WM Recall Emm Recall
80 - \\ Bl Accuracy 80 - Bl Accuracy
Il F1 score Il F1 score
60 - 60 A
= X
40 - 40 -
20 - 20 -
0 0
© Mahmoud Abdelsalam World Leading Research with Real World Impact! Um@%;

” Computer Science



I' C'S Conclusion & Future Work C-SPECC

: - Center for Security and Privacy
The Institute for Cyber Security Enhanced Cloud Computing

The goal of this paper was to provide a develop cloud-specific online
malware detection method by leveraging cloud characteristics (i.e.,
auto-scaling).

1. We developed an effective approach for detecting malware using
process-level features for low-level malware in an auto-scaling scenario.

2. We introduced a novel pairing samples approach for capturing
correlations between VMs.

Future Work:

e Applying and testing multiple architectures (e.g., hadoop systems or
containers)

* Investigating and leveraging more cloud characteristics for security.

* Develop techniques to handle the situation when multiple VMs are
infected simultaneously by an attacker.
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